論文の概要: RIS-aided Latent Space Alignment for Semantic Channel Equalization
- arxiv url: http://arxiv.org/abs/2507.16450v1
- Date: Tue, 22 Jul 2025 10:51:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.079607
- Title: RIS-aided Latent Space Alignment for Semantic Channel Equalization
- Title(参考訳): セマンティックチャネル等化のためのRIS支援潜時空間アライメント
- Authors: Tomás Hüttebräucker, Mario Edoardo Pandolfo, Simone Fiorellino, Emilio Calvanese Strinati, Paolo Di Lorenzo,
- Abstract要約: 我々は,無線通信において,厳密なビットレベルの精度を保証するのではなく,意図した意味を伝達することに焦点を当てた新しいパラダイムを導入する。
これらのシステムは、しばしばデータから直接意味を学習し、エンコードするためにディープニューラルネットワーク(DNN)に依存しており、より効率的な通信を可能にしている。
本研究では、再構成可能なインテリジェントサーフェス(RIS)の存在を利用する物理・意味チャネル等化フレームワークを提案する。
提案手法は, 様々なシナリオや無線チャネル条件において, 従来型, 意味的, 意味的, 意味的チャネル等化へのアプローチを一貫して上回っていることを示す。
- 参考スコア(独自算出の注目度): 10.555901476981923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic communication systems introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy. These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication. However, in multi-user settings where interacting agents are trained independently-without shared context or joint optimization-divergent latent representations across AI-native devices can lead to semantic mismatches, impeding mutual understanding even in the absence of traditional transmission errors. In this work, we address semantic mismatch in Multiple-Input Multiple-Output (MIMO) channels by proposing a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS). The semantic equalization is implemented as a sequence of transformations: (i) a pre-equalization stage at the transmitter; (ii) propagation through the RIS-aided channel; and (iii) a post-equalization stage at the receiver. We formulate the problem as a constrained Minimum Mean Squared Error (MMSE) optimization and propose two solutions: (i) a linear semantic equalization chain, and (ii) a non-linear DNN-based semantic equalizer. Both methods are designed to operate under semantic compression in the latent space and adhere to transmit power constraints. Through extensive evaluations, we show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
- Abstract(参考訳): セマンティック通信システムは、厳密なビットレベルの精度を保証するのではなく、意図した意味を伝達することに焦点を当てた、無線通信における新しいパラダイムを導入している。
これらのシステムは、しばしばデータから直接意味を学習し、エンコードするためにディープニューラルネットワーク(DNN)に依存しており、より効率的な通信を可能にしている。
しかし、対話エージェントが個別にトレーニングされるマルチユーザ設定では、共有コンテキストや、AIネイティブデバイス間での共同最適化-分割遅延表現が意味的なミスマッチを引き起こす可能性があるため、従来の送信エラーがなくても相互理解が妨げられる。
本研究では,複数入力多重出力(MIMO)チャネルにおけるセマンティックミスマッチに対処し,再構成可能なインテリジェントサーフェス(RIS)の存在を利用した物理・セマンティックチャネル等化フレームワークを提案する。
意味的等化は変換の列として実装される。
i) 送信機における前等化段階
(ii)RISを介するチャネルを伝播すること、及び
三 受信機における均等化後の段階
制約付き最小平均二乗誤差(MMSE)最適化として問題を定式化し,2つの解を提案する。
(i)線形意味等化連鎖、及び
(ii)非線形DNNに基づく意味等化器。
どちらの手法も潜在空間のセマンティック圧縮の下で動作し、送信電力の制約に固執するように設計されている。
広汎な評価により,提案手法は,様々なシナリオや無線チャネル条件において,従来型,非結合型,物理的,意味的なチャネル等化に対するアプローチを一貫して上回ることを示す。
関連論文リスト
- Latent Space Alignment for AI-Native MIMO Semantic Communications [11.185200213307208]
本稿では,意味コミュニケーションにおける意味的ミスマッチに対処する新しい手法を提案する。
ニューラルネットワークベースのモデルは、電力予算と複雑さの制約の下でセマンティックプリコーダ/デコーダを学ぶ。
目的指向のセマンティックコミュニケーションシナリオにおいて,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2025-07-22T15:16:18Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [11.385703484113552]
生成人工知能(GAI)を利用した新しい意味コミュニケーションフレームワークを提案する。
意味的特徴抽出のための変分オートエンコーダを組み合わせた潜在拡散モデル(LDM)に基づくセマンティックコミュニケーションフレームワークを提案する。
提案システムはゼロショットの一般化をサポートし,低SNRおよびアウト・オブ・ディストリビューション条件下での優れた性能を実現する訓練自由フレームワークである。
論文 参考訳(メタデータ) (2025-06-06T03:20:32Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G無線システムは、超低レイテンシで大量のデータをサポートすることが期待されている。
従来のビットレベルの伝送戦略は、現代的なデータ集約型アプリケーションに必要な効率と適応性をサポートできない。
セマンティックコミュニケーション(SemCom)の概念は、生データの代わりにタスク関連セマンティック情報を伝達することに集中することで、この制限に対処する。
論文 参考訳(メタデータ) (2025-05-28T04:03:57Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
本稿では,ソースデータのアウトレイラを処理するために,遅延拡散モデルを用いたSemComシステムを開発した。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
本稿では,実用的な意味コミュニケーションフレームワークを提案する。
2つの知性エージェント間の効果的な目標指向情報共有を可能にする。
数値的な評価は、少ないビット量で効率的な通信を実現するためのフレームワークの能力を示している。
論文 参考訳(メタデータ) (2023-11-30T03:36:19Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
ゼロショット学習(ZSL)は、目に見えないクラス認識の問題に取り組み、目に見えないクラスから目に見えないクラスに意味的な知識を移す。
本稿では,意味領域と視覚領域を協調させる新しい階層型意味視覚適応(HSVA)フレームワークを提案する。
4つのベンチマークデータセットの実験では、HSVAは従来のZSLと一般的なZSLの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-30T14:27:50Z) - Reinforcement Learning-powered Semantic Communication via Semantic
Similarity [13.569045590522316]
我々は,ビットレベルの精度を厳格に確保する代わりに,セマンティック情報を保存するための新しいセマンティックコミュニケーション機構を導入する。
一般的に使用されるビットレベルのメトリクスは、重要な意味や構造を捉えるのに脆弱であることを示す。
ユーザ定義のセマンティック測定を同時に最適化できる強化学習(RL)ベースのソリューションを提案しました。
論文 参考訳(メタデータ) (2021-08-27T05:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。