Improving ASP-based ORS Schedules through Machine Learning Predictions
- URL: http://arxiv.org/abs/2507.16454v1
- Date: Tue, 22 Jul 2025 10:56:46 GMT
- Title: Improving ASP-based ORS Schedules through Machine Learning Predictions
- Authors: Pierangela Bruno, Carmine Dodaro, Giuseppe Galatà , Marco Maratea, Marco Mochi,
- Abstract summary: The Operating Room Scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules.<n>It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocate the required resources.<n>We employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules.
- Score: 4.215267357325546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Operating Room Scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of beds in different department units. Recently, solutions to this problem based on Answer Set Programming (ASP) have been delivered. Such solutions are overall satisfying but, when applied to real data, they can currently only verify whether the encoding aligns with the actual data and, at most, suggest alternative schedules that could have been computed. As a consequence, it is not currently possible to generate provisional schedules. Furthermore, the resulting schedules are not always robust. In this paper, we integrate inductive and deductive techniques for solving these issues. We first employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules. Then, we consider the confidence of such predictions as an additional input to our problem and update the encoding correspondingly in order to compute more robust schedules. Results on historical data from the ASL1 Liguria in Italy confirm the viability of our integration. Under consideration in Theory and Practice of Logic Programming (TPLP).
Related papers
- Semantic Scheduling for LLM Inference [48.19648297172146]
We introduce the concept of semantic scheduling in scheduling of requests from large language models (LLM)<n>We present a novel scheduling algorithm with optimal time complexity, designed to minimize the overall waiting time in LLM-based prompt scheduling.
arXiv Detail & Related papers (2025-06-13T20:15:58Z) - Efficiently Scaling LLM Reasoning with Certaindex [25.549811985276488]
Test-time reasoning algorithms can wastefully generate many tokens without improving accuracy.<n>We introduce Certaindex, an algorithm-agnostic metric measuring when further computation is unlikely to alter the final result.<n>Certaindex is lightweight, can accelerate reasoning program inference via early exit, and enables dynamic token allocation.
arXiv Detail & Related papers (2024-12-30T14:57:53Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - DNCs Require More Planning Steps [7.837209773889032]
We investigate the effect of computational time and memory on generalization of implicit algorithmic solvers.
We show how the planning budget can drastically change the behavior of the learned algorithm.
arXiv Detail & Related papers (2024-06-04T10:31:03Z) - The Road Less Scheduled [45.01813613035411]
Existing learning rate schedules that do not require specification of the optimization stopping step T are greatly out-performed by learning rate schedules that depend on T.
We propose an approach that avoids the need for this stopping time by eschewing the use of schedules entirely.
Our Schedule-Free approach introduces no additional hyper- parameters over standard schedules with momentum.
arXiv Detail & Related papers (2024-05-24T16:20:46Z) - Optimal Linear Decay Learning Rate Schedules and Further Refinements [46.79573408189601]
Learning rate schedules used in practice bear little resemblance to those recommended by theory.
We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules.
arXiv Detail & Related papers (2023-10-11T19:16:35Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
This research aims to develop an innovative approach that employs machine learning (ML) for addressing optimization problems.
We introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) solver as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP.
Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $times$ speed improvements.
arXiv Detail & Related papers (2023-08-19T15:52:43Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - Answer-Set Programming for Lexicographical Makespan Optimisation in
Parallel Machine Scheduling [18.286430978487388]
We deal with a challenging scheduling problem on parallel machines with sequence-dependent setup times and release dates.
We put the individual machine spans in non-ascending order and lexicographically minimise the resulting robustnesss.
Our experimental results show that ASP is indeed a promising KRR paradigm for this problem and is competitive with state-of-the-art CP and MIP solvers.
arXiv Detail & Related papers (2022-12-18T12:43:24Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Winning solutions and post-challenge analyses of the ChaLearn AutoDL
challenge 2019 [112.36155380260655]
This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series.
Results show that DL methods dominated, though popular Neural Architecture Search (NAS) was impractical.
A high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator"
arXiv Detail & Related papers (2022-01-11T06:21:18Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.