論文の概要: Explainable Vulnerability Detection in C/C++ Using Edge-Aware Graph Attention Networks
- arxiv url: http://arxiv.org/abs/2507.16540v1
- Date: Tue, 22 Jul 2025 12:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.116781
- Title: Explainable Vulnerability Detection in C/C++ Using Edge-Aware Graph Attention Networks
- Title(参考訳): エッジ対応グラフアテンションネットワークを用いたC/C++における説明可能な脆弱性検出
- Authors: Radowanul Haque, Aftab Ali, Sally McClean, Naveed Khan,
- Abstract要約: 本稿では,C/C++コードの脆弱性検出のためのグラフベースのフレームワークであるExplainVulDを提案する。
平均精度88.25パーセント、F1スコア48.23パーセントをReVealデータセット上で30の独立ランで達成している。
- 参考スコア(独自算出の注目度): 0.2499907423888049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting security vulnerabilities in source code remains challenging, particularly due to class imbalance in real-world datasets where vulnerable functions are under-represented. Existing learning-based methods often optimise for recall, leading to high false positive rates and reduced usability in development workflows. Furthermore, many approaches lack explainability, limiting their integration into security workflows. This paper presents ExplainVulD, a graph-based framework for vulnerability detection in C/C++ code. The method constructs Code Property Graphs and represents nodes using dual-channel embeddings that capture both semantic and structural information. These are processed by an edge-aware attention mechanism that incorporates edge-type embeddings to distinguish among program relations. To address class imbalance, the model is trained using class-weighted cross-entropy loss. ExplainVulD achieves a mean accuracy of 88.25 percent and an F1 score of 48.23 percent across 30 independent runs on the ReVeal dataset. These results represent relative improvements of 4.6 percent in accuracy and 16.9 percent in F1 score compared to the ReVeal model, a prior learning-based method. The framework also outperforms static analysis tools, with relative gains of 14.0 to 14.1 percent in accuracy and 132.2 to 201.2 percent in F1 score. Beyond improved detection performance, ExplainVulD produces explainable outputs by identifying the most influential code regions within each function, supporting transparency and trust in security triage.
- Abstract(参考訳): ソースコードのセキュリティ脆弱性の検出は、特に脆弱な関数が表現されていない実世界のデータセットのクラス不均衡のため、依然として難しい。
既存の学習ベースの手法は、しばしばリコールのために最適化され、偽陽性率が高く、開発ワークフローにおけるユーザビリティが低下する。
さらに、多くのアプローチには説明責任がなく、セキュリティワークフローへの統合が制限されている。
本稿では,C/C++コードの脆弱性検出のためのグラフベースのフレームワークであるExplainVulDを提案する。
この方法は、コードプロパティグラフを構築し、意味情報と構造情報の両方をキャプチャするデュアルチャネル埋め込みを使用してノードを表現する。
これらはエッジ型埋め込みを組み込んだエッジ認識型アテンション機構によって処理され、プログラムの関係を区別する。
クラス不均衡に対処するために、モデルはクラス重み付きクロスエントロピー損失を用いて訓練される。
ExplainVulDは平均精度88.25パーセント、F1スコア48.23パーセントをReVealデータセット上で30の独立した実行で達成している。
これらの結果は、事前学習に基づく手法であるReVealモデルと比較して、精度が4.6%、F1スコアが16.9%の相対的な改善を示している。
また、このフレームワークは静的解析ツールよりも優れており、相対的な利得は14.0から14.1%、F1スコアは132.2から201.2%である。
検出性能の改善に加えて、ExplainVulDは、各機能内で最も影響力のあるコード領域を特定し、透明性とセキュリティトリアージの信頼性をサポートすることで、説明可能な出力を生成する。
関連論文リスト
- Refactoring $\
eq$ Bug-Inducing: Improving Defect Prediction with Code Change Tactics Analysis [54.361900378970134]
Just-in-time defect prediction (JIT-DP) は、早期にソフトウェア欠陥を引き起こすコード変更の可能性を予測することを目的としている。
これまでの研究は、その頻度にもかかわらず、評価フェーズと方法論フェーズの両方でコードを無視してきた。
JIT-Defects4Jデータセットのラベリング精度を13.7%向上させるコードと伝播を分類するためのCode chAnge Tactics (CAT)解析を提案する。
論文 参考訳(メタデータ) (2025-07-25T23:29:25Z) - LLMxCPG: Context-Aware Vulnerability Detection Through Code Property Graph-Guided Large Language Models [2.891351178680099]
本稿では,コードプロパティグラフ(CPG)とLarge Language Models(LLM)を統合し,堅牢な脆弱性検出を行う新しいフレームワークを提案する。
より簡潔で正確なコードスニペット表現を提供するアプローチの能力は、より大きなコードセグメントの分析を可能にします。
実証的な評価は、検証済みデータセット間でLLMxCPGの有効性を示し、最先端のベースラインよりもF1スコアが15~40%改善されている。
論文 参考訳(メタデータ) (2025-07-22T13:36:33Z) - SecVulEval: Benchmarking LLMs for Real-World C/C++ Vulnerability Detection [8.440793630384546]
大規模言語モデル(LLM)は、ソフトウェア工学のタスクにおいて有望であることを示している。
高品質なデータセットがないため、脆弱性検出の有効性を評価するのは難しい。
このベンチマークには、1999年から2024年までのC/C++プロジェクトで5,867のCVEをカバーする25,440の関数サンプルが含まれている。
論文 参考訳(メタデータ) (2025-05-26T11:06:03Z) - Distinguishing Look-Alike Innocent and Vulnerable Code by Subtle
Semantic Representation Learning and Explanation [19.16930806875121]
SVulDは、直感的な説明とともに、脆弱性検出のための関数レベルのセマンティック埋め込みである。
我々は、広く使われている実用的脆弱性データセット上で大規模な実験を行い、それを4つの最先端(SOTA)アプローチと比較する。
実験結果から,SVulD は SOTA を著しく改善し,全ての SOTA よりも優れていた。
論文 参考訳(メタデータ) (2023-08-22T07:23:12Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
現在の脆弱性スクリーニング技術は、新しい脆弱性を特定したり、開発者がコード脆弱性と分類を提供するのに効果がない。
これらの問題に対処するために,変換器 "RoBERTa" とグラフ畳み込みニューラルネットワーク (GCN) を組み合わせたマルチタスク・アンバイアス脆弱性分類器を提案する。
本稿では、逐次フロー、制御フロー、データフローからエッジを統合することで生成されたソースコードからのセマンティック脆弱性グラフ(SVG)表現と、Poacher Flow(PF)と呼ばれる新しいフローを利用したトレーニングプロセスを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:54:14Z) - Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability
Detection [17.761541379830373]
DeepDFAは、データフロー分析にインスパイアされたグラフ学習フレームワークである。
最高性能のベースラインモデルより75倍速く、9分で訓練された。
平均して17の脆弱性のうち8.7が検出され、パッチとバグの多いバージョンを区別することができた。
論文 参考訳(メタデータ) (2022-12-15T19:49:27Z) - Understanding Programmatic Weak Supervision via Source-aware Influence
Function [76.74549130841383]
Programmatic Weak Supervision (PWS)は、複数の弱い監督ソースのソース投票を確率的トレーニングラベルに集約する。
エンドモデルのトレーニング目標を分解し、各(データ、ソース、クラス)に関連する影響を計算するために、インフルエンス関数(IF)を構築します。
これらのプリミティブな影響スコアは、ソース投票、監督ソース、トレーニングデータなど、個々のコンポーネントPWSの影響を推定するために使用することができる。
論文 参考訳(メタデータ) (2022-05-25T15:57:24Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
一段検出器は基本的に、物体検出を密度の高い分類と位置化として定式化する。
1段検出器の最近の傾向は、局所化の質を推定するために個別の予測分岐を導入することである。
本稿では, 上記の3つの基本要素, 品質推定, 分類, ローカライゼーションについて述べる。
論文 参考訳(メタデータ) (2020-06-08T07:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。