論文の概要: A Comprehensive Data-centric Overview of Federated Graph Learning
- arxiv url: http://arxiv.org/abs/2507.16541v1
- Date: Tue, 22 Jul 2025 12:49:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.117773
- Title: A Comprehensive Data-centric Overview of Federated Graph Learning
- Title(参考訳): フェデレーショングラフ学習の包括的データ中心的概要
- Authors: Zhengyu Wu, Xunkai Li, Yinlin Zhu, Zekai Chen, Guochen Yan, Yanyu Yan, Hao Zhang, Yuming Ai, Xinmo Jin, Rong-Hua Li, Guoren Wang,
- Abstract要約: 本調査では,データ特性とデータ利用という2段階のデータ中心分類を提案する。
各分類レベルは3つの基準で定義され、それぞれが異なるデータ中心の構成を表す。
この調査では、事前訓練された大規模モデルとのFGL統合を調査し、現実的な応用を示し、GMLの新たなトレンドに沿った今後の方向性を強調している。
- 参考スコア(独自算出の注目度): 25.196937540182557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data applications, Federated Graph Learning (FGL) has emerged as a prominent solution that reconcile the tradeoff between optimizing the collective intelligence between decentralized datasets holders and preserving sensitive information to maximum. Existing FGL surveys have contributed meaningfully but largely focus on integrating Federated Learning (FL) and Graph Machine Learning (GML), resulting in early stage taxonomies that emphasis on methodology and simulated scenarios. Notably, a data centric perspective, which systematically examines FGL methods through the lens of data properties and usage, remains unadapted to reorganize FGL research, yet it is critical to assess how FGL studies manage to tackle data centric constraints to enhance model performances. This survey propose a two-level data centric taxonomy: Data Characteristics, which categorizes studies based on the structural and distributional properties of datasets used in FGL, and Data Utilization, which analyzes the training procedures and techniques employed to overcome key data centric challenges. Each taxonomy level is defined by three orthogonal criteria, each representing a distinct data centric configuration. Beyond taxonomy, this survey examines FGL integration with Pretrained Large Models, showcases realistic applications, and highlights future direction aligned with emerging trends in GML.
- Abstract(参考訳): ビッグデータアプリケーションの時代、フェデレーショングラフラーニング(FGL)は、分散データセットホルダー間の集合的インテリジェンスを最適化し、機密情報を最大限に保存するというトレードオフを緩和する重要なソリューションとして登場した。
既存のFGL調査は有意義だが、フェデレートラーニング(FL)とグラフ機械学習(GML)の統合に重点を置いている。
特に、データ特性と利用のレンズを通してFGLの手法を体系的に研究するデータ中心の視点は、FGLの研究を再編成するには適していないが、モデル性能を向上させるためにFGLの研究がどのようにデータ中心の制約に対処するかを評価することは重要である。
データ特徴は、FGLで使用されるデータセットの構造的および分布的特性に基づいて研究を分類し、データ利用は、主要なデータ中心の課題を克服するために使用される訓練手順と技術を分析する。
各分類基準は3つの直交基準で定義され、それぞれが異なるデータ中心の構成を表す。
この調査では、分類以外にも、事前訓練された大規模モデルとのFGL統合を調査し、現実的な応用を示し、GMLの新たなトレンドに沿った今後の方向性を強調している。
関連論文リスト
- Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
本稿では,有向グラフ学習研究のための新しい分類法を提案する。
我々はこれらの手法をデータ中心の観点から再検討し、データ表現の理解と改善に重点を置いている。
我々はこの分野における主要な機会と課題を特定し、有向グラフ学習における将来の研究と開発を導く洞察を提供する。
論文 参考訳(メタデータ) (2024-11-28T06:09:12Z) - OpenFGL: A Comprehensive Benchmark for Federated Graph Learning [36.04858706246336]
Federated Graph Learning(FGL)は、直接データ共有なしで複数のローカルシステムにまたがるグラフニューラルネットワークのための、有望な分散トレーニングパラダイムである。
FGLの普及にもかかわらず、様々な研究の背景と設定にまたがる現実世界のアプリケーションからの多様なモチベーションは、公正な評価に重大な課題をもたらす。
本稿では,主要なFGLシナリオであるGraph-FLとSubgraph-FLのための統一ベンチマークOpenFGLを提案する。
論文 参考訳(メタデータ) (2024-08-29T06:40:01Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - FedGTA: Topology-aware Averaging for Federated Graph Learning [44.11777886421429]
Federated Graph Learning(FGL)は、大規模サブグラフの協調トレーニングを可能にする分散機械学習パラダイムである。
多くのFGL最適化戦略はグラフ構造を無視し、満足できない性能と緩やかな収束を示す。
FedGTA(Federated Graph Topology-Aware Aggregation, FedGTA)は,局所的スムーシング信頼度と近傍の混合特徴を最適化するパーソナライズされた最適化戦略である。
論文 参考訳(メタデータ) (2024-01-22T08:31:53Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
データ中心グラフ機械学習(DC-GML)という,グラフデータライフサイクルのすべての段階を包含する体系的なフレームワークを導入する。
各段階の完全な分類法が示され、3つの重要なグラフ中心の質問に答える。
我々は、DC-GMLドメインの将来展望を指摘し、その進歩と応用をナビゲートするための洞察を提供する。
論文 参考訳(メタデータ) (2023-09-20T00:40:13Z) - Graph-Free Learning in Graph-Structured Data: A More Efficient and
Accurate Spatiotemporal Learning Perspective [11.301939428860404]
本稿では,グラフ時間学習における空間相関を捉えるための正規化のためのグラフ自由学習モジュールを提案する。
厳密な理論的な証明は、時間複雑性が提案されたグラフ畳み込み演算よりもはるかに優れていることを証明している。
論文 参考訳(メタデータ) (2023-01-27T14:26:11Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。