A Target-based Multi-LiDAR Multi-Camera Extrinsic Calibration System
- URL: http://arxiv.org/abs/2507.16621v1
- Date: Tue, 22 Jul 2025 14:15:28 GMT
- Title: A Target-based Multi-LiDAR Multi-Camera Extrinsic Calibration System
- Authors: Lorenzo Gentilini, Pierpaolo Serio, Valentina Donzella, Lorenzo Pollini,
- Abstract summary: We propose a target-based extrinsic calibration system tailored for a multi-LiDAR and multi-camera sensor suite.<n>This system enables cross-calibration between LiDARs and cameras with limited prior knowledge.<n>Results demonstrated the effectiveness of the proposed method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extrinsic Calibration represents the cornerstone of autonomous driving. Its accuracy plays a crucial role in the perception pipeline, as any errors can have implications for the safety of the vehicle. Modern sensor systems collect different types of data from the environment, making it harder to align the data. To this end, we propose a target-based extrinsic calibration system tailored for a multi-LiDAR and multi-camera sensor suite. This system enables cross-calibration between LiDARs and cameras with limited prior knowledge using a custom ChArUco board and a tailored nonlinear optimization method. We test the system with real-world data gathered in a warehouse. Results demonstrated the effectiveness of the proposed method, highlighting the feasibility of a unique pipeline tailored for various types of sensors.
Related papers
- YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - From Chaos to Calibration: A Geometric Mutual Information Approach to
Target-Free Camera LiDAR Extrinsic Calibration [4.378156825150505]
We propose a target free extrinsic calibration algorithm that requires no ground truth training data.
We demonstrate our proposed improvement using the KITTI and KITTI-360 fisheye data set.
arXiv Detail & Related papers (2023-11-03T13:30:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - CROON: Automatic Multi-LiDAR Calibration and Refinement Method in Road
Scene [15.054452813705112]
CROON (automatiC multi-LiDAR CalibratiOn and Refinement method in rOad sceNe) is a two-stage method including rough and refinement calibration.
Results on real-world and simulated data sets demonstrate the reliability and accuracy of our method.
arXiv Detail & Related papers (2022-03-07T07:36:31Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - CalibDNN: Multimodal Sensor Calibration for Perception Using Deep Neural
Networks [27.877734292570967]
We propose a novel deep learning-driven technique (CalibDNN) for accurate calibration among multimodal sensor, specifically LiDAR-Camera pairs.
The entire processing is fully automatic with a single model and single iteration.
Results comparison among different methods and extensive experiments on different datasets demonstrates the state-of-the-art performance.
arXiv Detail & Related papers (2021-03-27T02:43:37Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.