RAVine: Reality-Aligned Evaluation for Agentic Search
- URL: http://arxiv.org/abs/2507.16725v2
- Date: Thu, 31 Jul 2025 10:20:56 GMT
- Title: RAVine: Reality-Aligned Evaluation for Agentic Search
- Authors: Yilong Xu, Xiang Long, Zhi Zheng, Jinhua Gao,
- Abstract summary: RAVine is a Reality-Aligned eValuation framework for agentic LLMs with search.<n> RAVine targets multi-point queries and long-form answers that better reflect user intents.<n>We benchmark a series of models using RAVine and derive several insights.
- Score: 7.4420114967110385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.
Related papers
- Am I on the Right Track? What Can Predicted Query Performance Tell Us about the Search Behaviour of Agentic RAG [35.16209722320604]
This study examines the applicability of query performance prediction (QPP) within the recent Agentic RAG models Search-R1 and R1-Searcher.<n>We find that applying effective retrievers can achieve higher answer quality within a shorter reasoning process.
arXiv Detail & Related papers (2025-07-14T15:54:50Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
We present a new benchmark for evaluating a form of retrieval-augmented generation (RAG)<n>RAG requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources.<n>We build it using a synthetic data pipeline that simulates business across product planning, development, and support stages.
arXiv Detail & Related papers (2025-06-29T08:34:59Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - InfoDeepSeek: Benchmarking Agentic Information Seeking for Retrieval-Augmented Generation [63.55258191625131]
InfoDeepSeek is a new benchmark for assessing agentic information seeking in real-world, dynamic web environments.<n>We propose a systematic methodology for constructing challenging queries satisfying the criteria of determinacy, difficulty, and diversity.<n>We develop the first evaluation framework tailored to dynamic agentic information seeking, including fine-grained metrics about the accuracy, utility, and compactness of information seeking outcomes.
arXiv Detail & Related papers (2025-05-21T14:44:40Z) - MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
We introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios.<n>We propose three tasks to assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity.
arXiv Detail & Related papers (2025-03-11T05:02:03Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.<n>We introduce an iterative approach where the search engine generates retrieval results for the RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.<n>We adapt this to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning [25.356999988217325]
Relevance modeling aims to locate desirable items for corresponding queries.
auxiliary query-item interactions extracted from user historical behavior data could provide hints to reveal users' search intents further.
Our model builds multi-level co-attention for distilling coarse-grained and fine-grained semantic representations from both neighbor and target views.
arXiv Detail & Related papers (2023-08-10T06:52:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.