Toward a Real-Time Framework for Accurate Monocular 3D Human Pose Estimation with Geometric Priors
- URL: http://arxiv.org/abs/2507.16850v1
- Date: Mon, 21 Jul 2025 08:18:23 GMT
- Title: Toward a Real-Time Framework for Accurate Monocular 3D Human Pose Estimation with Geometric Priors
- Authors: Mohamed Adjel,
- Abstract summary: We propose a framework that combines real-time 2D keypoint detection with geometry-aware 2D-to-3D lifting.<n>We discuss how these ingredients can enable fast, personalized, and accurate 3D pose estimation from monocular images without requiring specialized hardware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D human pose estimation remains a challenging and ill-posed problem, particularly in real-time settings and unconstrained environments. While direct imageto-3D approaches require large annotated datasets and heavy models, 2D-to-3D lifting offers a more lightweight and flexible alternative-especially when enhanced with prior knowledge. In this work, we propose a framework that combines real-time 2D keypoint detection with geometry-aware 2D-to-3D lifting, explicitly leveraging known camera intrinsics and subject-specific anatomical priors. Our approach builds on recent advances in self-calibration and biomechanically-constrained inverse kinematics to generate large-scale, plausible 2D-3D training pairs from MoCap and synthetic datasets. We discuss how these ingredients can enable fast, personalized, and accurate 3D pose estimation from monocular images without requiring specialized hardware. This proposal aims to foster discussion on bridging data-driven learning and model-based priors to improve accuracy, interpretability, and deployability of 3D human motion capture on edge devices in the wild.
Related papers
- 3D-MOOD: Lifting 2D to 3D for Monocular Open-Set Object Detection [58.78881632019072]
We introduce the first end-to-end 3D Monocular Open-set Object Detector (3D-MOOD)<n>We lift the open-set 2D detection into 3D space through our designed 3D bounding box head.<n>We condition the object queries with geometry prior and overcome the generalization for 3D estimation across diverse scenes.
arXiv Detail & Related papers (2025-07-31T13:56:41Z) - E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models [78.1674905950243]
We present the first comprehensive benchmark for 3D geometric foundation models (GFMs)<n>GFMs directly predict dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters.<n>We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains.<n>All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
arXiv Detail & Related papers (2025-06-02T17:53:09Z) - Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors [31.277540988829976]
This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets.<n>We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images.
arXiv Detail & Related papers (2025-03-25T23:55:47Z) - Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation [30.744137117668643]
Lift3D is a framework that enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy.<n>In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.
arXiv Detail & Related papers (2024-11-27T18:59:52Z) - Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - Hybrid 3D Human Pose Estimation with Monocular Video and Sparse IMUs [15.017274891943162]
Temporal 3D human pose estimation from monocular videos is a challenging task in human-centered computer vision.
Inertial sensor has been introduced to provide complementary source of information.
It remains challenging to integrate heterogeneous sensor data for producing physically rational 3D human poses.
arXiv Detail & Related papers (2024-04-27T09:02:42Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
We consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera.
We leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks.
In particular, we estimate the scene depth and unique person scale from normalized disparity predictions using the 2D body joints and joint angles.
arXiv Detail & Related papers (2023-01-12T18:01:28Z) - CameraPose: Weakly-Supervised Monocular 3D Human Pose Estimation by
Leveraging In-the-wild 2D Annotations [25.05308239278207]
We present CameraPose, a weakly-supervised framework for 3D human pose estimation from a single image.
By adding a camera parameter branch, any in-the-wild 2D annotations can be fed into our pipeline to boost the training diversity.
We also introduce a refinement network module with confidence-guided loss to further improve the quality of noisy 2D keypoints extracted by 2D pose estimators.
arXiv Detail & Related papers (2023-01-08T05:07:41Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.