Pixels, Patterns, but No Poetry: To See The World like Humans
- URL: http://arxiv.org/abs/2507.16863v1
- Date: Mon, 21 Jul 2025 21:50:16 GMT
- Title: Pixels, Patterns, but No Poetry: To See The World like Humans
- Authors: Hongcheng Gao, Zihao Huang, Lin Xu, Jingyi Tang, Xinhao Li, Yue Liu, Haoyang Li, Taihang Hu, Minhua Lin, Xinlong Yang, Ge Wu, Balong Bi, Hongyu Chen, Wentao Zhang,
- Abstract summary: State-of-the-art MLLMs exhibit catastrophic failures on our perceptual tasks trivial for humans.<n>This paper shifts focus from reasoning to perception.
- Score: 33.773551676022514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving human-like perception and reasoning in Multimodal Large Language Models (MLLMs) remains a central challenge in artificial intelligence. While recent research has primarily focused on enhancing reasoning capabilities in MLLMs, a fundamental question persists: Can Multimodal Large Language Models truly perceive the world as humans do? This paper shifts focus from reasoning to perception. Rather than constructing benchmarks specifically for reasoning, we introduce the Turing Eye Test (TET), a challenging perception-oriented benchmark comprising four diagnostic tasks that evaluate MLLMs' performance on synthetic images that humans process intuitively. Our findings reveal that state-of-the-art MLLMs exhibit catastrophic failures on our perceptual tasks trivial for humans. Both in-context learning and training on language backbone-effective for previous benchmarks-fail to improve performance on our tasks, while fine-tuning the vision tower enables rapid adaptation, suggesting that our benchmark poses challenges for vision tower generalization rather than for the knowledge and reasoning capabilities of the language backbone-a key gap between current MLLMs and human perception. We release a representative subset of TET tasks in this version, and will introduce more diverse tasks and methods to enhance visual generalization in future work.
Related papers
- Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought [83.89629325805505]
We introduce Argus to address limitations with a new visual attention grounding mechanism.<n>Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention.
arXiv Detail & Related papers (2025-05-29T17:59:56Z) - Human-Aligned Bench: Fine-Grained Assessment of Reasoning Ability in MLLMs vs. Humans [9.315735862658244]
We propose Human-Aligned Bench, a benchmark for alignment of multimodal reasoning with human performance.<n>We collected 9,794 multimodal questions that solely rely on contextual reasoning, including bilingual (Chinese and English) multimodal questions and pure text-based questions.<n>Extensive experiments on the Human-Aligned Bench reveal notable differences between the performance of current MLLMs in multimodal reasoning and human performance.
arXiv Detail & Related papers (2025-05-16T11:41:19Z) - VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.<n>These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.<n>Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)<n>VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.<n>We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
We systematically review Large Language Models' capabilities across three important cognitive domains: decision-making biases, reasoning, and creativity.<n>On decision-making, our synthesis reveals that while LLMs demonstrate several human-like biases, some biases observed in humans are absent.<n>On reasoning, advanced LLMs like GPT-4 exhibit deliberative reasoning akin to human System-2 thinking, while smaller models fall short of human-level performance.<n>A distinct dichotomy emerges in creativity: while LLMs excel in language-based creative tasks, such as storytelling, they struggle with divergent thinking tasks that require real-world context.
arXiv Detail & Related papers (2024-12-20T02:26:56Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks.
We propose Visualization-of-Thought (VoT) to elicit spatial reasoning of LLMs by visualizing their reasoning traces.
VoT significantly enhances the spatial reasoning abilities of LLMs.
arXiv Detail & Related papers (2024-04-04T17:45:08Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection with Multimodal Large Language Models [61.8876114116716]
Multimodal large language models (MLLMs) have demonstrated strong capabilities in vision-related tasks.<n>However, their ability to detect subtle visual spoofing and forgery clues in face attack detection tasks remains underexplored.<n>We introduce a benchmark, SHIELD, to evaluate MLLMs for face spoofing and forgery detection.
arXiv Detail & Related papers (2024-02-06T17:31:36Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
Large Language Models have shown tremendous performance on a variety of natural language processing tasks.
It is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed.
We introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks.
arXiv Detail & Related papers (2023-05-31T04:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.