Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought
- URL: http://arxiv.org/abs/2505.23766v1
- Date: Thu, 29 May 2025 17:59:56 GMT
- Title: Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought
- Authors: Yunze Man, De-An Huang, Guilin Liu, Shiwei Sheng, Shilong Liu, Liang-Yan Gui, Jan Kautz, Yu-Xiong Wang, Zhiding Yu,
- Abstract summary: We introduce Argus to address limitations with a new visual attention grounding mechanism.<n>Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention.
- Score: 83.89629325805505
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advances in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks, yet they often struggle with vision-centric scenarios where precise visual focus is needed for accurate reasoning. In this paper, we introduce Argus to address these limitations with a new visual attention grounding mechanism. Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention during multimodal reasoning tasks. Evaluations on diverse benchmarks demonstrate that Argus excels in both multimodal reasoning tasks and referring object grounding tasks. Extensive analysis further validates various design choices of Argus, and reveals the effectiveness of explicit language-guided visual region-of-interest engagement in MLLMs, highlighting the importance of advancing multimodal intelligence from a visual-centric perspective. Project page: https://yunzeman.github.io/argus/
Related papers
- Pixels, Patterns, but No Poetry: To See The World like Humans [33.773551676022514]
State-of-the-art MLLMs exhibit catastrophic failures on our perceptual tasks trivial for humans.<n>This paper shifts focus from reasoning to perception.
arXiv Detail & Related papers (2025-07-21T21:50:16Z) - Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes? [14.41230051139575]
This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty.<n>We also present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function.
arXiv Detail & Related papers (2025-06-03T13:44:14Z) - Debating for Better Reasoning: An Unsupervised Multimodal Approach [56.74157117060815]
We extend the debate paradigm to a multimodal setting, exploring its potential for weaker models to supervise and enhance the performance of stronger models.<n>We focus on visual question answering (VQA), where two "sighted" expert vision-language models debate an answer, while a "blind" (text-only) judge adjudicates based solely on the quality of the arguments.<n>In our framework, the experts defend only answers aligned with their beliefs, thereby obviating the need for explicit role-playing and concentrating the debate on instances of expert disagreement.
arXiv Detail & Related papers (2025-05-20T17:18:17Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)<n>We propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT)<n>It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces.
arXiv Detail & Related papers (2025-01-13T18:23:57Z) - Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios [69.00444996464662]
We propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables vision-language models to reason using visual crops corresponding to relevant entities.<n>Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - LATTE: Learning to Think with Vision Specialists [103.5952731807559]
We propose LATTE, a family of vision-language models that offload perception to state-of-the-art vision models.<n>By offloading perception to state-of-the-art vision models, our approach enables vision-language models to focus solely on reasoning over high-quality perceptual information.
arXiv Detail & Related papers (2024-12-07T00:42:04Z) - ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom [40.904175628582855]
We introduce a novel visual reasoning framework named ProReason.<n>ProReason features multi-run proactive perception and decoupled vision-reasoning capabilities.<n>Our experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods.
arXiv Detail & Related papers (2024-10-18T03:22:06Z) - Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models [37.44286562901589]
We propose SpatialEval, a novel benchmark that covers diverse aspects of spatial reasoning.
We conduct a comprehensive evaluation of competitive language and vision-language models.
Our findings reveal several counter-intuitive insights that have been overlooked in the literature.
arXiv Detail & Related papers (2024-06-21T03:53:37Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks.
We propose Visualization-of-Thought (VoT) to elicit spatial reasoning of LLMs by visualizing their reasoning traces.
VoT significantly enhances the spatial reasoning abilities of LLMs.
arXiv Detail & Related papers (2024-04-04T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.