Fast and Scalable Gene Embedding Search: A Comparative Study of FAISS and ScaNN
- URL: http://arxiv.org/abs/2507.16978v1
- Date: Tue, 22 Jul 2025 19:28:54 GMT
- Title: Fast and Scalable Gene Embedding Search: A Comparative Study of FAISS and ScaNN
- Authors: Mohammad Saleh Refahi, Gavin Hearne, Harrison Muller, Kieran Lynch, Bahrad A. Sokhansanj, James R. Brown, Gail Rosen,
- Abstract summary: Large-scale similarity search is a foundational task in bioinformatics for detecting homology, functional similarity, and novelty among genomic and proteomic sequences.<n>We explore embedding-based similarity search methods that learn latent representations capturing deeper structural and functional patterns beyond raw sequence alignment.<n>Our results highlight both computational advantages (in memory and runtime efficiency) and improved retrieval quality, offering a promising alternative to traditional alignment-heavy tools.
- Score: 0.3015442485490762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of DNA sequencing data has outpaced traditional heuristic-based methods, which struggle to scale effectively. Efficient computational approaches are urgently needed to support large-scale similarity search, a foundational task in bioinformatics for detecting homology, functional similarity, and novelty among genomic and proteomic sequences. Although tools like BLAST have been widely used and remain effective in many scenarios, they suffer from limitations such as high computational cost and poor performance on divergent sequences. In this work, we explore embedding-based similarity search methods that learn latent representations capturing deeper structural and functional patterns beyond raw sequence alignment. We systematically evaluate two state-of-the-art vector search libraries, FAISS and ScaNN, on biologically meaningful gene embeddings. Unlike prior studies, our analysis focuses on bioinformatics-specific embeddings and benchmarks their utility for detecting novel sequences, including those from uncharacterized taxa or genes lacking known homologs. Our results highlight both computational advantages (in memory and runtime efficiency) and improved retrieval quality, offering a promising alternative to traditional alignment-heavy tools.
Related papers
- scMamba: A Scalable Foundation Model for Single-Cell Multi-Omics Integration Beyond Highly Variable Feature Selection [5.139014238424409]
scMamba is a model designed to integrate single-cell multi-omics data without the need for prior feature selection.<n> scMamba distills rich biological insights from high-dimensional, sparse single-cell multi-omics data.<n>Our findings position scMamba as a powerful tool for large-scale single-cell multi-omics integration.
arXiv Detail & Related papers (2025-06-25T12:58:01Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Discovering physical laws with parallel combinatorial tree search [57.05912962368898]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.<n>Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade.<n>We introduce a parallel tree search (PCTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
Genome-informed Hyper-Attention Network (G-HANet) is capable of effectively distilling histo-genomic knowledge during training.
Network comprises cross-modal associating branch (CAB) and hyper-attention survival branch (HSB)
arXiv Detail & Related papers (2024-03-15T06:20:09Z) - DNA Sequence Classification with Compressors [0.0]
Our study introduces a novel adaptation of Jiang et al.'s compressor-based, parameter-free classification method, specifically tailored for DNA sequence analysis.
Not only does this method align with the current state-of-the-art in terms of accuracy, but it also offers a more resource-efficient alternative to traditional machine learning methods.
arXiv Detail & Related papers (2024-01-25T09:17:19Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We introduce a novel approach to high-dimensional binary classification that integrates regularization with ensembling techniques.<n>In medical genomics applications, our approach identifies critical biomarkers overlooked by competing methods.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Heterogeneous Network Representation Learning: A Unified Framework with
Survey and Benchmark [57.10850350508929]
We aim to provide a unified framework to summarize and evaluate existing research on heterogeneous network embedding (HNE)
As the first contribution, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms.
As the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and etcfrom different sources.
As the third contribution, we create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
arXiv Detail & Related papers (2020-04-01T03:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.