Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images
- URL: http://arxiv.org/abs/2403.10040v2
- Date: Mon, 18 Mar 2024 11:02:11 GMT
- Title: Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images
- Authors: Zhikang Wang, Yumeng Zhang, Yingxue Xu, Seiya Imoto, Hao Chen, Jiangning Song,
- Abstract summary: Genome-informed Hyper-Attention Network (G-HANet) is capable of effectively distilling histo-genomic knowledge during training.
Network comprises cross-modal associating branch (CAB) and hyper-attention survival branch (HSB)
- Score: 7.5123289730388825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histo-genomic multi-modal methods have recently emerged as a powerful paradigm, demonstrating significant potential for improving cancer prognosis. However, genome sequencing, unlike histopathology imaging, is still not widely accessible in underdeveloped regions, limiting the application of these multi-modal approaches in clinical settings. To address this, we propose a novel Genome-informed Hyper-Attention Network, termed G-HANet, which is capable of effectively distilling the histo-genomic knowledge during training to elevate uni-modal whole slide image (WSI)-based inference for the first time. Compared with traditional knowledge distillation methods (i.e., teacher-student architecture) in other tasks, our end-to-end model is superior in terms of training efficiency and learning cross-modal interactions. Specifically, the network comprises the cross-modal associating branch (CAB) and hyper-attention survival branch (HSB). Through the genomic data reconstruction from WSIs, CAB effectively distills the associations between functional genotypes and morphological phenotypes and offers insights into the gene expression profiles in the feature space. Subsequently, HSB leverages the distilled histo-genomic associations as well as the generated morphology-based weights to achieve the hyper-attention modeling of the patients from both histopathology and genomic perspectives to improve cancer prognosis. Extensive experiments are conducted on five TCGA benchmarking datasets and the results demonstrate that G-HANet significantly outperforms the state-of-the-art WSI-based methods and achieves competitive performance with genome-based and multi-modal methods. G-HANet is expected to be explored as a useful tool by the research community to address the current bottleneck of insufficient histo-genomic data pairing in the context of cancer prognosis and precision oncology.
Related papers
- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
We propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
arXiv Detail & Related papers (2024-07-08T01:06:13Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome
Prediction using Integrative Histopathology-Genomic Features [2.3942863352287787]
Mutual-Guided Cross-Modality Transformer (MGCT) is a weakly-supervised, attention-based multimodal learning framework.
We propose MGCT to combine histology features and genomic features to model the genotype-phenotype interactions within the tumor microenvironment.
arXiv Detail & Related papers (2023-11-20T10:49:32Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Cancer-inspired Genomics Mapper Model for the Generation of Synthetic
DNA Sequences with Desired Genomics Signatures [0.0]
Cancer-inspired genomics mapper model (CGMM) combines genetic algorithm (GA) and deep learning (DL) methods.
We demonstrate that CGMM can generate synthetic genomes of selected phenotypes such as ancestry and cancer.
arXiv Detail & Related papers (2023-05-01T07:16:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
We propose PONET- a novel biological pathway-informed pathology-genomic deep model.
Our proposed method achieves superior predictive performance and reveals meaningful biological interpretations.
arXiv Detail & Related papers (2023-01-06T05:24:41Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.