PyG 2.0: Scalable Learning on Real World Graphs
- URL: http://arxiv.org/abs/2507.16991v2
- Date: Sun, 27 Jul 2025 18:32:07 GMT
- Title: PyG 2.0: Scalable Learning on Real World Graphs
- Authors: Matthias Fey, Jinu Sunil, Akihiro Nitta, Rishi Puri, Manan Shah, Blaž Stojanovič, Ramona Bendias, Alexandria Barghi, Vid Kocijan, Zecheng Zhang, Xinwei He, Jan Eric Lenssen, Jure Leskovec,
- Abstract summary: We present Pyg 2.0, a comprehensive update that introduces substantial improvements in scalability and real-world application capabilities.<n>We detail the framework's enhanced architecture, including support for heterogeneous and temporal graphs, scalable feature/graph stores, and various optimizations.
- Score: 70.76634276606693
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: PyG (PyTorch Geometric) has evolved significantly since its initial release, establishing itself as a leading framework for Graph Neural Networks. In this paper, we present Pyg 2.0 (and its subsequent minor versions), a comprehensive update that introduces substantial improvements in scalability and real-world application capabilities. We detail the framework's enhanced architecture, including support for heterogeneous and temporal graphs, scalable feature/graph stores, and various optimizations, enabling researchers and practitioners to tackle large-scale graph learning problems efficiently. Over the recent years, PyG has been supporting graph learning in a large variety of application areas, which we will summarize, while providing a deep dive into the important areas of relational deep learning and large language modeling.
Related papers
- Unified Graph Networks (UGN): A Deep Neural Framework for Solving Graph Problems [0.5699788926464752]
We propose a novel framework named emphUnified emphGraph emphNetwork (UGN) to solve graph problems.<n>UGN is based on graph convolutional neural networks (GCN) and 2-dimensional convolutional neural networks (Conv2D)
arXiv Detail & Related papers (2025-02-11T12:03:18Z) - Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models [3.9489815622117566]
Learnable Graph Pooling Token (LGPT) enables flexible and efficient graph representation.<n>Our method achieves a 4.13% performance improvement on the GraphQA benchmark without training the large language model.
arXiv Detail & Related papers (2025-01-29T10:35:41Z) - PyG-SSL: A Graph Self-Supervised Learning Toolkit [71.22547762704602]
Graph Self-Supervised Learning (SSL) has emerged as a pivotal area of research in recent years.<n>Despite the remarkable achievements of these graph SSL methods, their current implementation poses significant challenges for beginners.<n>We present a Graph SSL toolkit named PyG-SSL, which is built upon PyTorch and is compatible with various deep learning and scientific computing backends.
arXiv Detail & Related papers (2024-12-30T18:32:05Z) - LasTGL: An Industrial Framework for Large-Scale Temporal Graph Learning [61.4707298969173]
We introduce LasTGL, an industrial framework that integrates unified and unified implementations of common temporal graph learning algorithms.
LasTGL provides comprehensive temporal graph datasets, TGNN models and utilities along with well-documented tutorials.
arXiv Detail & Related papers (2023-11-28T08:45:37Z) - pyGSL: A Graph Structure Learning Toolkit [14.000763778781547]
pyGSL is a Python library that provides efficient implementations of state-of-the-art graph structure learning models.
pyGSL is written in GPU-friendly ways, allowing one to scale to much larger network tasks.
arXiv Detail & Related papers (2022-11-07T14:23:10Z) - Hyperbolic Graph Learning: A Comprehensive Review [56.53820115624101]
This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL)<n>We systematically categorize and analyze existing methods dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms.<n>We extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Deep Graph Structure Learning for Robust Representations: A Survey [20.564611153151834]
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data.
To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning.
arXiv Detail & Related papers (2021-03-04T13:49:25Z) - Scene Graph Modification Based on Natural Language Commands [90.0662899539489]
Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems.
In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing graph given a new user's command.
arXiv Detail & Related papers (2020-10-06T10:01:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.