Deep Graph Structure Learning for Robust Representations: A Survey
- URL: http://arxiv.org/abs/2103.03036v1
- Date: Thu, 4 Mar 2021 13:49:25 GMT
- Title: Deep Graph Structure Learning for Robust Representations: A Survey
- Authors: Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, Liang Wang
- Abstract summary: Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data.
To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning.
- Score: 20.564611153151834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are widely used for analyzing graph-structured
data. Most GNN methods are highly sensitive to the quality of graph structures
and usually require a perfect graph structure for learning informative
embeddings. However, the pervasiveness of noise in graphs necessitates learning
robust representations for real-world problems. To improve the robustness of
GNN models, many studies have been proposed around the central concept of Graph
Structure Learning (GSL), which aims to jointly learn an optimized graph
structure and corresponding representations. Towards this end, in the presented
survey, we broadly review recent progress of GSL methods for learning robust
representations. Specifically, we first formulate a general paradigm of GSL,
and then review state-of-the-art methods classified by how they model graph
structures, followed by applications that incorporate the idea of GSL in other
graph tasks. Finally, we point out some issues in current studies and discuss
future directions.
Related papers
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
We propose a novel method named textitGlobal-augmented Graph Structure Learning (GaGSL)
The key idea behind GaGSL is to learn a compact and informative graph structure for node classification tasks.
Comprehensive evaluations across a range of datasets reveal the outstanding performance and robustness of GaGSL compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-11-07T01:23:48Z) - GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks [20.05098366613674]
We introduce GNNAnatomy, a visual analytics system designed to generate and evaluate multi-level explanations for graph classification tasks.
GNNAnatomy uses graphlets, primitive graph substructures, to identify the most critical substructures in a graph class by analyzing the correlation between GNN predictions and graphlet frequencies.
We demonstrate the effectiveness of GNNAnatomy through case studies on synthetic and real-world graph datasets from sociology and biology domains.
arXiv Detail & Related papers (2024-06-06T23:09:54Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-05T09:05:14Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - From Local Structures to Size Generalization in Graph Neural Networks [53.3202754533658]
Graph neural networks (GNNs) can process graphs of different sizes.
Their ability to generalize across sizes, specifically from small to large graphs, is still not well understood.
arXiv Detail & Related papers (2020-10-17T19:36:54Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.