論文の概要: Divisive Decisions: Improving Salience-Based Training for Generalization in Binary Classification Tasks
- arxiv url: http://arxiv.org/abs/2507.17000v1
- Date: Tue, 22 Jul 2025 20:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.760545
- Title: Divisive Decisions: Improving Salience-Based Training for Generalization in Binary Classification Tasks
- Title(参考訳): 分割決定:二項分類課題における一般化のためのサリエンスに基づく訓練の改善
- Authors: Jacob Piland, Chris Sweet, Adam Czajka,
- Abstract要約: 既存のサリエンシ誘導訓練手法は、モデルのクラスアクティベーションマップ(CAM)と人間の参照サリエンシマップを比較する損失項を組み込むことで、モデル一般化を改善する。
以前の作業では、誤ったラベルクラスのために得られたモデルの正当性である偽クラスCAM(s)を無視していた。
本仮説は,真偽クラスモデルのCAMをトレーニング戦略に取り入れ,重要な特徴を識別するための新しいポストホックツールである。
- 参考スコア(独自算出の注目度): 3.858607108771203
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing saliency-guided training approaches improve model generalization by incorporating a loss term that compares the model's class activation map (CAM) for a sample's true-class ({\it i.e.}, correct-label class) against a human reference saliency map. However, prior work has ignored the false-class CAM(s), that is the model's saliency obtained for incorrect-label class. We hypothesize that in binary tasks the true and false CAMs should diverge on the important classification features identified by humans (and reflected in human saliency maps). We use this hypothesis to motivate three new saliency-guided training methods incorporating both true- and false-class model's CAM into the training strategy and a novel post-hoc tool for identifying important features. We evaluate all introduced methods on several diverse binary close-set and open-set classification tasks, including synthetic face detection, biometric presentation attack detection, and classification of anomalies in chest X-ray scans, and find that the proposed methods improve generalization capabilities of deep learning models over traditional (true-class CAM only) saliency-guided training approaches. We offer source codes and model weights\footnote{GitHub repository link removed to preserve anonymity} to support reproducible research.
- Abstract(参考訳): 既存のサリエンシ誘導訓練手法は、モデルのクラスアクティベーションマップ(CAM)をサンプルの真のクラス({\it i.e.}, correct-label class)と人間の参照サリエンシマップと比較することで、モデル一般化を改善する。
しかし、事前の作業では、誤ったラベルクラスのために得られたモデルの正当性である偽クラスCAM(s)を無視している。
二元的タスクでは、真のCAMと偽のCAMは、人間によって識別される重要な分類機能(および人間の唾液マップに反映される)に基づいて分岐すべきである、という仮説を立てる。
本仮説は,真偽クラスモデルのCAMをトレーニング戦略に取り入れ,重要な特徴を識別するための新しいポストホックツールである。
胸部X線スキャンにおける顔検出,生体情報提示攻撃検出,異常の分類など,多種多様な二元的クローズセットおよびオープンセットの分類タスクに関するすべての手法を評価した結果,提案手法は従来の(真のCAMのみ)給与誘導トレーニング手法よりも深層学習モデルの一般化能力を向上させることがわかった。
私たちは、再現可能な研究をサポートするために匿名性を維持するために、ソースコードとモデルウェイト\footnote{GitHubリポジトリリンクを削除しました。
関連論文リスト
- Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
航法的に訓練された検出器は、限定的で単調な偽のパターンに過度に適合する傾向にあり、特徴空間は高度に制約され、低ランクになる。
潜在的な治療法の1つは、ビジョンファウンデーションモデルに事前訓練された知識を取り入れて、機能領域を広げることである。
主要なコンポーネントを凍結し、残ったコンポーネントのみを適用することで、フェイクパターンを学習しながら、トレーニング済みの知識を保存します。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
本稿では,グローバルな知識とローカルな知識の利点を組み合わせた生成的説明モデルを提案する。
クラスアソシエーション埋め込み(CAE)は、各サンプルを1組のクラス関連コードと個別コードにエンコードする。
クラス関連特徴を個々の特徴から効率的に分離するビルディングブロック・コヒーレンシー特徴抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-12T07:41:00Z) - Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
AdaInCVと呼ばれる教師なしRe-IDのための適応型クラス内変動コントラスト学習アルゴリズムを提案する。
このアルゴリズムは,クラスタリング後のクラス内変動を考慮し,各クラスのモデルの学習能力を定量的に評価する。
より具体的には、Adaptive Sample Mining (AdaSaM)とAdaptive Outlier Filter (AdaOF)の2つの新しい戦略が提案されている。
論文 参考訳(メタデータ) (2024-04-06T15:48:14Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - MENTOR: Human Perception-Guided Pretraining for Increased Generalization [4.737519767218666]
畳み込みニューラルネットワーク(CNN)のトレーニングに人間の知覚を活用することで、オープンセット認識タスクにおけるそのようなモデルの一般化能力が向上した。
本稿では,オープンセットの異常検出を行うCNNの2つの訓練ラウンドを通じて,この問題に対処するMENTORを紹介する。
MENTORは3つの異なるCNNバックボーンにまたがる一般化性能を,様々な異常検出タスクで向上させることを示す。
論文 参考訳(メタデータ) (2023-10-30T13:50:44Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domainは、ドメインシフトとカテゴリシフトという2つのシフトを処理して、データセット間で知識を転送することを目的としている。
主な課題は、既知のクラス知識の分布をソースからターゲットに適応させながら、未知のターゲットサンプルを正しく識別することである。
既存のほとんどの手法は、まずターゲットが適応した既知の知識を訓練し、次に未知のターゲットサンプルを識別するために単一のしきい値に依存することでこの問題に対処する。
論文 参考訳(メタデータ) (2022-12-16T09:01:57Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
ゼロショット動作認識のための2段階のディープニューラルネットワークを提案する。
サンプリング段階では,授業の動作特徴と単語ベクトルによって訓練されたGAN(Generative Adversarial Network)を利用する。
分類段階において、アクションクラスの単語ベクトルと関連するオブジェクトの関係に基づいて知識グラフを構築する。
論文 参考訳(メタデータ) (2021-05-25T09:34:42Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
半教師付き小ショット分類のための潜在空間レベルで識別学習と生成学習を統合するディープ・インバーチブルハイブリッドモデルを提案する。
我々の主な独創性は、これらのコンポーネントを潜在空間レベルで統合することであり、過度な適合を防ぐのに有効である。
論文 参考訳(メタデータ) (2021-05-22T05:55:16Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
一般化ゼロショット学習(GZSL)の目的は、目に見えないクラスと見えないクラスの両方を認識することである。
ほとんどのGZSLメソッドは、通常、見えないクラスの意味情報から視覚表現を合成することを学ぶ。
本論文では,三重項損失を持つ2重変分オートエンコーダを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T05:21:27Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
CIL(Class-Incremental Learning)は,未知のクラスを逐次生成するストリーミングデータを用いて,信頼性の高いモデルをトレーニングすることを目的としている。
従来のクローズドセット学習とは異なり、CILには2つの大きな課題がある。
新たなクラスが検出された後、以前のデータ全体を使用して再トレーニングすることなく、モデルを更新する必要がある。
論文 参考訳(メタデータ) (2020-08-31T04:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。