論文の概要: Causal Graph Fuzzy LLMs: A First Introduction and Applications in Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2507.17016v1
- Date: Tue, 22 Jul 2025 21:03:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.773365
- Title: Causal Graph Fuzzy LLMs: A First Introduction and Applications in Time Series Forecasting
- Title(参考訳): Causal Graph Fuzzy LLMs: 時系列予測の入門と応用
- Authors: Omid Orang, Patricia O. Lucas, Gabriel I. F. Paiva, Petronio C. L. Silva, Felipe Augusto Rocha da Silva, Adriano Alonso Veloso, Frederico Gadelha Guimaraes,
- Abstract要約: 本研究では, GPT-2 とファジィ時系列 (FTS) と因果グラフを組み合わせた新しい LLM フレーム CGF-LLM を提案する。
主な目的は、ファジフィケーションと因果解析の並列適用により、数値時系列を解釈可能な形式に変換することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the application of Large Language Models (LLMs) to time series forecasting (TSF) has garnered significant attention among researchers. This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph to predict multivariate time series, marking the first such architecture in the literature. The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis, enabling both semantic understanding and structural insight as input for the pretrained GPT-2 model. The resulting textual representation offers a more interpretable view of the complex dynamics underlying the original time series. The reported results confirm the effectiveness of our proposed LLM-based time series forecasting model, as demonstrated across four different multivariate time series datasets. This initiative paves promising future directions in the domain of TSF using LLMs based on FTS.
- Abstract(参考訳): 近年,Large Language Models (LLMs) の時系列予測(TSF)への応用が注目されている。
本研究は, GPT-2とファジィ時系列(FTS)と因果グラフを組み合わせて多変量時系列を予測し, CGF-LLMと命名された新たなLCMの枠組みを提案する。
鍵となる目的は、ファジフィケーションと因果解析の並列適用により、数値時系列を解釈可能な形式に変換し、事前訓練されたGPT-2モデルの入力として意味的理解と構造的洞察の両方を可能にすることである。
結果のテキスト表現は、元の時系列の根底にある複雑なダイナミクスをより解釈可能なビューを提供する。
その結果,4つの異なる時系列データセットで示すように,LLMに基づく時系列予測モデルの有効性が確認された。
このイニシアチブは、TSに基づくLSMを使用して、TSFの領域における将来的な方向性を舗装する。
関連論文リスト
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) は、金融計画や健康モニタリングなど、多くの現実世界のドメインにおいて重要である。
既存のLarge Language Models (LLM) は通常、時系列データ固有の特性を無視するため、非最適に実行する。
時系列データから基本的なtextitPatterns と有意義な textitSemantics を学習し,TLF のための LLM-PS を提案する。
論文 参考訳(メタデータ) (2025-03-12T11:45:11Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXLはプロトタイプベースの時系列エンコーダを統合するマルチモーダル予測フレームワークである。
より正確な予測と解釈可能な説明を生成する。
4つの実世界のデータセットに対する実証的な評価は、TimeXLがAUCで最大8.9%の改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-03-02T20:40:53Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Harnessing Vision Models for Time Series Analysis: A Survey [72.09716244582684]
本研究は, 時系列解析におけるLLMよりも視覚モデルの方が優れていることを示す。
既存の方法の包括的かつ詳細な概要を提供し、詳細な分類学の双対的な見解を提供する。
このフレームワークに関わる前処理と後処理のステップにおける課題に対処する。
論文 参考訳(メタデータ) (2025-02-13T00:42:11Z) - TimeRAG: BOOSTING LLM Time Series Forecasting via Retrieval-Augmented Generation [5.607649016637917]
TimeRAGは、LLMの時系列予測にRAG(Retrieval-Augmented Generation)を組み込んだフレームワークである。
さまざまなドメインからのデータセットの実験では、RAGの統合により、オリジナルのモデルの予測精度が平均2.97%向上した。
論文 参考訳(メタデータ) (2024-12-21T14:27:38Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
本研究では,大言語モデルが時系列予測の文脈で直面する重要な課題を明らかにする。
実験結果から、大規模な言語モデルは特定のデータセットのゼロショット予測において良好に機能するが、様々な時系列データや従来の信号に直面すると、予測精度は顕著に低下することが示された。
論文 参考訳(メタデータ) (2024-08-09T05:13:03Z) - LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting [69.33802286580786]
LTSM-Bundleは総合的なツールボックスであり、LTSMをトレーニングするためのベンチマークである。
複数の次元からLTSMをモジュール化し、ベンチマークし、プロンプト戦略、トークン化アプローチ、ベースモデルの選択、データ量、データセットの多様性を含む。
実験により、この組み合わせは最先端のLTSMや従来のTSF法と比較して、ゼロショットと少数ショットのパフォーマンスが優れていることが示された。
論文 参考訳(メタデータ) (2024-06-20T07:09:19Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
時系列を数値桁の列として符号化することにより、テキストの次トーケン予測として時系列予測をフレーム化することができる。
GPT-3 や LLaMA-2 のような大規模言語モデル (LLM) は、ダウンストリームタスクでトレーニングされた目的構築された時系列モデルの性能に匹敵する、あるいはそれ以上のレベルにおいて、驚くほどゼロショット・エクスポレート・時系列を生成できる。
論文 参考訳(メタデータ) (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。