Causal Graph Fuzzy LLMs: A First Introduction and Applications in Time Series Forecasting
- URL: http://arxiv.org/abs/2507.17016v1
- Date: Tue, 22 Jul 2025 21:03:13 GMT
- Title: Causal Graph Fuzzy LLMs: A First Introduction and Applications in Time Series Forecasting
- Authors: Omid Orang, Patricia O. Lucas, Gabriel I. F. Paiva, Petronio C. L. Silva, Felipe Augusto Rocha da Silva, Adriano Alonso Veloso, Frederico Gadelha Guimaraes,
- Abstract summary: This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph.<n>The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the application of Large Language Models (LLMs) to time series forecasting (TSF) has garnered significant attention among researchers. This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph to predict multivariate time series, marking the first such architecture in the literature. The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis, enabling both semantic understanding and structural insight as input for the pretrained GPT-2 model. The resulting textual representation offers a more interpretable view of the complex dynamics underlying the original time series. The reported results confirm the effectiveness of our proposed LLM-based time series forecasting model, as demonstrated across four different multivariate time series datasets. This initiative paves promising future directions in the domain of TSF using LLMs based on FTS.
Related papers
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXL is a multi-modal prediction framework that integrates a prototype-based time series encoder.<n>It produces more accurate predictions and interpretable explanations.<n> Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9% improvement in AUC.
arXiv Detail & Related papers (2025-03-02T20:40:53Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.<n>TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.<n> Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Harnessing Vision Models for Time Series Analysis: A Survey [72.09716244582684]
This survey discusses the advantages of vision models over LLMs in time series analysis.<n>It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy.<n>We address the challenges in the pre- and post-processing steps involved in this framework.
arXiv Detail & Related papers (2025-02-13T00:42:11Z) - TimeRAG: BOOSTING LLM Time Series Forecasting via Retrieval-Augmented Generation [5.607649016637917]
TimeRAG is a framework that incorporates Retrieval-Augmented Generation (RAG) into time series forecasting LLMs.<n> Experiments on datasets from various domains show that the integration of RAG improved the prediction accuracy of the original model by 2.97% on average.
arXiv Detail & Related papers (2024-12-21T14:27:38Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
This study highlights the key challenges that large language models encounter in the context of time series prediction.
The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals.
arXiv Detail & Related papers (2024-08-09T05:13:03Z) - LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting [69.33802286580786]
We introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs.<n>It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, base model selection, data quantity, and dataset diversity.<n> Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.<n>Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.<n>Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.