Quantum synchronization between two strongly driven YIG spheres mediated via a microwave cavity
- URL: http://arxiv.org/abs/2507.17042v1
- Date: Tue, 22 Jul 2025 21:56:31 GMT
- Title: Quantum synchronization between two strongly driven YIG spheres mediated via a microwave cavity
- Authors: Jatin Ghildiyal, Shubhrangshu Dasgupta, Asoka Biswas,
- Abstract summary: We study synchronization between two strongly driven magnon modes indirectly coupled via a single-mode microwave cavity.<n>We show, by using input-output formalism, that both classical and quantum synchronization emerge for appropriate choices of coupling, detuning, and driving.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a theoretical study of synchronization between two strongly driven magnon modes indirectly coupled via a single-mode microwave cavity. Each magnon mode, hosted in separate Yttrium Iron Garnet spheres, interacts coherently with the cavity field, leading to cavity-mediated nonlinear coupling. We show, by using input-output formalism, that both classical and quantum synchronization emerge for appropriate choices of coupling, detuning, and driving. We find that thermal noise reduces quantum synchronization, highlighting the importance of low-temperature conditions. This study provides useful insights into tunable magnonic interactions in cavity systems, with possible applications in quantum information processing and hybrid quantum technologies.
Related papers
- Quantum synchronization between two spin chains using pseudo-bosonic equivalence [0.9374652839580183]
We explore the quantum synchronization of two finite chains of spin-1/2 particles, via a nonlinear interaction mediated by a a central intermediary spin chain.
We show that quantum synchronization is robust against variations in the number of spins and inter-spin coupling, though may be affected by thermal noise.
This work advances the understanding of synchronization in multi-spin systems and introduces a generalized synchronization measure for both bosons and fermions.
arXiv Detail & Related papers (2024-08-12T13:11:40Z) - Engineering synthetic gauge fields through the coupling phases in cavity magnonics [0.06022769903412459]
cavity magnonics is a promising platform for quantum transducers and quantum memories.
In "loop-coupled" systems, where there are at least as many couplings as modes, the coupling phases become relevant for the physics.
We present experimental evidence of the existence of such coupling phases by considering two spheres made of Yttrium-Iron-Garnet and two different re-entrant cavities.
arXiv Detail & Related papers (2023-12-08T09:25:26Z) - Macroscopic distant magnon-mode entanglement via a squeezed drive [0.20482269513546453]
Quantum magnonics has garnered significant attention as a promising platform for advancing in this direction.<n>In our proposed scheme, we utilize a one-dimensional array of cavities coupled, with each cavity housing a single yttrium iron garnet (YIG) sphere.<n>Our results may lead to applications of cavity-magnon arrays in quantum information processing and quantum communication systems.
arXiv Detail & Related papers (2023-08-25T16:14:03Z) - Transfer of quantum states and stationary quantum correlations in a
hybrid optomechanical network [6.216381549252352]
We study the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network.
It is found that high fidelity transfer of Schr"odinger's cat and squeezed states between the cavities modes is possible.
arXiv Detail & Related papers (2023-05-29T17:58:04Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Implementation and enhancement of nonreciprocal quantum synchronization
with strong isolation in antiferromagnet-cavity systems [12.330326247154968]
We show how to achieve nonreciprocal quantum synchronization for two magnon modes in a two-sublattice antiferromagnet with strong isolation.
arXiv Detail & Related papers (2021-05-28T00:55:08Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.