Transfer of quantum states and stationary quantum correlations in a
hybrid optomechanical network
- URL: http://arxiv.org/abs/2305.18291v1
- Date: Mon, 29 May 2023 17:58:04 GMT
- Title: Transfer of quantum states and stationary quantum correlations in a
hybrid optomechanical network
- Authors: Hugo Molinares, Bing He and Vitalie Eremeev
- Abstract summary: We study the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network.
It is found that high fidelity transfer of Schr"odinger's cat and squeezed states between the cavities modes is possible.
- Score: 6.216381549252352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a systematic study on the effects of dynamical transfer and
steady-state synchronization of quantum states in a hybrid optomechanical
network, consisting of two cavities with atoms inside and interacting via a
common moving mirror (i.e. mechanical oscillator), are studied. It is found
that high fidelity transfer of Schr\"{o}dinger's cat and squeezed states
between the cavities modes is possible. Additionally, we show the effect of
synchronization of cavity modes in a steady squeezed states at high fidelity
realizable by the mechanical oscillator which intermediates the generation,
transfer and stabilization of the squeezing. In this framework, we also have
studied the generation and evolution of bipartite and tripartite entanglement
and found its interconnection to the effects of transfer and synchronization.
Particularly, when the transfer occurs at the maximal fidelity, at this instant
any entanglement is almost zero, so the modes are disentangled. On the other
hand, when the two bosonic modes are synchronized in a squeezed stationary
state, then these modes are also entangled. The results found in this study may
find their applicability in quantum information and computation technologies,
as well in metrology setups, where the squeezed states are essential.
Related papers
- Quantum synchronization in one-dimensional topological systems [4.680781132156346]
Synchronization in quantum systems can be induced through applying dissipation on the central sites.
Two types of synchronization, stemming from the topological edge states, are characterized by the off-diagonal or diagonal correlations between the boundary sites.
Remarkably, the synchronous oscillations maintain steady amplitude and frequency in the thermodynamic limit.
arXiv Detail & Related papers (2024-09-19T09:03:09Z) - Investigating the Impact of Qubit Velocity on Quantum Synchronization Dynamics [1.1068280788997427]
We investigate the quantum synchronization dynamics of a moving qubit within a dissipative cavity environment.
We find that the qubit's velocity and detuning influence synchronization, offering potential pathways to enhance coherence in quantum systems.
arXiv Detail & Related papers (2024-09-02T19:16:16Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Entanglement as a sufficient condition for quantum synchronization
between two mechanical oscillators [0.0]
We present an optomechanical model to show that entanglement can be a sufficient condition for quantum synchronization.
We show that entanglement always becomes accompanied by quantum synchronization, though the reverse is not necessarily true.
This behaviour can be observed for a large range of system parameters.
arXiv Detail & Related papers (2023-05-04T14:20:51Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Metastable quantum entrainment [0.0]
We show that quantum entrainment is here characterized by fluctuations driving an incoherent process between two metastable phases.
We discuss connections with the phenomena of dissipative phase transitions and transient synchronization in open quantum systems.
arXiv Detail & Related papers (2021-09-03T10:58:21Z) - Implementation and enhancement of nonreciprocal quantum synchronization
with strong isolation in antiferromagnet-cavity systems [12.330326247154968]
We show how to achieve nonreciprocal quantum synchronization for two magnon modes in a two-sublattice antiferromagnet with strong isolation.
arXiv Detail & Related papers (2021-05-28T00:55:08Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.