Sensor Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation
- URL: http://arxiv.org/abs/2507.17071v1
- Date: Tue, 22 Jul 2025 23:16:03 GMT
- Title: Sensor Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation
- Authors: Juntao Lin, Xianghao Zhan,
- Abstract summary: Previous studies reported promising drift compensation results but lacked robust statistical experimental validation.<n>This is the first application of KD for electronic nose drift mitigation, significantly outperforming the previous state-of-the-art DRCA method.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to environmental changes and sensor aging, sensor drift challenges the performance of electronic nose systems in gas classification during real-world deployment. Previous studies using the UCI Gas Sensor Array Drift Dataset reported promising drift compensation results but lacked robust statistical experimental validation and may overcompensate for sensor drift, losing class-related variance.To address these limitations and improve sensor drift compensation with statistical rigor, we first designed two domain adaptation tasks based on the same electronic nose dataset: using the first batch to predict the remaining batches, simulating a controlled laboratory setting; and predicting the next batch using all prior batches, simulating continuous training data updates for online training. We then systematically tested three methods: our proposed novel Knowledge Distillation (KD) method, the benchmark method Domain Regularized Component Analysis (DRCA), and a hybrid method KD-DRCA, across 30 random test set partitions on the UCI dataset. We showed that KD consistently outperformed both DRCA and KD-DRCA, achieving up to an 18% improvement in accuracy and 15% in F1-score, demonstrating KD's superior effectiveness in drift compensation. This is the first application of KD for electronic nose drift mitigation, significantly outperforming the previous state-of-the-art DRCA method and enhancing the reliability of sensor drift compensation in real-world environments.
Related papers
- Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
Continual test-time adaptive object detection (CTTA-OD) aims to online adapt a source pre-trained detector to ever-changing environments.<n>Our motivation stems from the observation that not all learned source features are beneficial.<n>Our method achieves superior adaptation performance while reducing computational overhead by 12% in FLOPs.
arXiv Detail & Related papers (2025-06-03T05:27:56Z) - AutoML for Multi-Class Anomaly Compensation of Sensor Drift [44.63945828405864]
Sensor drift degrades the performance of machine learning models over time.<n>Standard cross-validation method overestimates performance by inadequately accounting for drift.<n>This paper presents two solutions: (1) a novel sensor drift compensation learning paradigm for validating models, and (2) automated machine learning (AutoML) techniques to enhance classification performance and compensate sensor drift.
arXiv Detail & Related papers (2025-02-26T14:34:53Z) - The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model [2.355460994057843]
Self-distillation (SD) has attracted attention as a simple yet powerful approach in machine learning.<n>Despite its widespread use, the mechanisms underlying its effectiveness remain unclear.
arXiv Detail & Related papers (2025-01-27T17:20:48Z) - Unsupervised Attention-Based Multi-Source Domain Adaptation Framework for Drift Compensation in Electronic Nose Systems [16.320912838687796]
We propose a novel framework for gas identification with drift compensation in E-nose systems.
The AMDS-PFFA model effectively leverages labeled data from multiple source domains.
It achieves the highest average gas recognition accuracy with strong convergence.
arXiv Detail & Related papers (2024-09-20T02:47:05Z) - An Empirical Study of Uncertainty Estimation Techniques for Detecting
Drift in Data Streams [4.818865062632567]
This study conducts a comprehensive empirical evaluation of using uncertainty values as substitutes for error rates in detecting drifts.
We examine five uncertainty estimation methods in conjunction with the ADWIN detector across seven real-world datasets.
Our results reveal that while the SWAG method exhibits superior calibration, the overall accuracy in detecting drifts is not notably impacted by the choice of uncertainty estimation method.
arXiv Detail & Related papers (2023-11-22T13:17:55Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques.
Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion.
arXiv Detail & Related papers (2023-08-14T07:51:15Z) - Continual Detection Transformer for Incremental Object Detection [154.8345288298059]
Incremental object detection (IOD) aims to train an object detector in phases, each with annotations for new object categories.
As other incremental settings, IOD is subject to catastrophic forgetting, which is often addressed by techniques such as knowledge distillation (KD) and exemplar replay (ER)
We propose a new method for transformer-based IOD which enables effective usage of KD and ER in this context.
arXiv Detail & Related papers (2023-04-06T14:38:40Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
This paper investigates the feasibility of employing state-of-the-art probabilistic transformers in Bayesian optimisation.
We observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation.
We introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance.
arXiv Detail & Related papers (2022-05-27T11:13:17Z) - Exploring Covariate and Concept Shift for Detection and Calibration of
Out-of-Distribution Data [77.27338842609153]
characterization reveals that sensitivity to each type of shift is important to the detection and confidence calibration of OOD data.
We propose a geometrically-inspired method to improve OOD detection under both shifts with only in-distribution data.
We are the first to propose a method that works well across both OOD detection and calibration and under different types of shifts.
arXiv Detail & Related papers (2021-10-28T15:42:55Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
Domain adaptation experiments using WSJ as a source domain and TED-LIUM 3 as well as SWITCHBOARD show that up to 80% of the performance of a system trained on ground-truth data can be recovered.
arXiv Detail & Related papers (2020-11-26T18:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.