Model Compression Engine for Wearable Devices Skin Cancer Diagnosis
- URL: http://arxiv.org/abs/2507.17125v1
- Date: Wed, 23 Jul 2025 02:02:24 GMT
- Title: Model Compression Engine for Wearable Devices Skin Cancer Diagnosis
- Authors: Jacob M. Delgado-López, Andrea P. Seda-Hernandez, Juan D. Guadalupe-Rosado, Luis E. Fernandez Ramirez, Miguel Giboyeaux-Camilo, Wilfredo E. Lugo-Beauchamp,
- Abstract summary: Skin cancer is one of the most prevalent and preventable types of cancer, yet its early detection remains a challenge.<n>This study proposes an AI-driven diagnostic tool optimized for embedded systems to address this gap.
- Score: 0.04818215922729968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer is one of the most prevalent and preventable types of cancer, yet its early detection remains a challenge, particularly in resource-limited settings where access to specialized healthcare is scarce. This study proposes an AI-driven diagnostic tool optimized for embedded systems to address this gap. Using transfer learning with the MobileNetV2 architecture, the model was adapted for binary classification of skin lesions into "Skin Cancer" and "Other." The TensorRT framework was employed to compress and optimize the model for deployment on the NVIDIA Jetson Orin Nano, balancing performance with energy efficiency. Comprehensive evaluations were conducted across multiple benchmarks, including model size, inference speed, throughput, and power consumption. The optimized models maintained their performance, achieving an F1-Score of 87.18% with a precision of 93.18% and recall of 81.91%. Post-compression results showed reductions in model size of up to 0.41, along with improvements in inference speed and throughput, and a decrease in energy consumption of up to 0.93 in INT8 precision. These findings validate the feasibility of deploying high-performing, energy-efficient diagnostic tools on resource-constrained edge devices. Beyond skin cancer detection, the methodologies applied in this research have broader applications in other medical diagnostics and domains requiring accessible, efficient AI solutions. This study underscores the potential of optimized AI systems to revolutionize healthcare diagnostics, thereby bridging the divide between advanced technology and underserved regions.
Related papers
- Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection [33.37223681850477]
Early detection of non-small cell lung cancer (NSCLC) is critical for improving patient outcomes.<n>We explore the use of automatic cough analysis as a pre-screening tool for distinguishing between NSCLC patients and healthy controls.<n>Recordings were analyzed using machine learning techniques, such as support vector machine (SVM) and XGBoost.
arXiv Detail & Related papers (2025-07-25T11:30:22Z) - Computer Vision for Real-Time Monkeypox Diagnosis on Embedded Systems [0.0]
This study presents an AI-driven diagnostic tool developed for deployment on the NVIDIA Jetson Orin Nano.<n>The model was trained on the open-source Monkeypox Skin Lesion dataset, achieving a 93.07% F1-Score.<n>The diagnostic tool is an efficient, scalable, and energy-conscious solution to address diagnosis challenges in underserved regions.
arXiv Detail & Related papers (2025-07-23T01:53:31Z) - PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology [33.51485504161335]
We present PathBench, the first comprehensive benchmark for pathology foundation models (PFMs)<n>Our framework incorporates large-scale data, enabling objective comparison of PFMs.<n>We have collected 15,888 WSIs from 8,549 patients across 10 hospitals, encompassing over 64 diagnosis and prognosis tasks.
arXiv Detail & Related papers (2025-05-26T16:42:22Z) - Efficient Brain Tumor Segmentation Using a Dual-Decoder 3D U-Net with Attention Gates (DDUNet) [0.0]
Cancer remains one of the leading causes of worldwide mortality, and among its many forms, brain tumors are particularly notorious.<n>Recent advances in artificial intelligence have shown great promise in assisting medical professionals with precise tumor segmentation.<n>We present a novel dual-decoder U-Net architecture enhanced with attention-gated skip connections, designed specifically for brain tumor segmentation from MRI scans.
arXiv Detail & Related papers (2025-04-14T22:45:33Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
Congenital heart disease (CHD) is a critical condition that demands early detection.<n>This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals.<n>We evaluated our model on several datasets, including the primary dataset from Bangladesh.
arXiv Detail & Related papers (2025-03-28T05:47:44Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.<n>Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.<n>We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - Deep learning in computed tomography pulmonary angiography imaging: a
dual-pronged approach for pulmonary embolism detection [0.0]
The aim of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of Pulmonary Embolism (PE)
Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism.
AG-CNN achieves robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture.
arXiv Detail & Related papers (2023-11-09T08:23:44Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
We used interpretability techniques, such as the Global Surrogate (GS) method, the Individual Expectation (ICE) plots and the Conditional Shapley values (SV)
The best performance for breast cancer diagnosis was achieved by the proposed ENN (96.6% accuracy and 0.96 area under the ROC curve)
arXiv Detail & Related papers (2022-02-04T13:41:30Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.