PICore: Physics-Informed Unsupervised Coreset Selection for Data Efficient Neural Operator Training
- URL: http://arxiv.org/abs/2507.17151v1
- Date: Wed, 23 Jul 2025 02:32:44 GMT
- Title: PICore: Physics-Informed Unsupervised Coreset Selection for Data Efficient Neural Operator Training
- Authors: Anirudh Satheesh, Anant Khandelwal, Mucong Ding, Radu Balan,
- Abstract summary: We propose PICore, an unsupervised coreset selection framework for training neural operators.<n> PICore identifies the most informative training samples without requiring access to ground-truth PDE solutions.<n>PICore achieves up to 78% average increase in training efficiency relative to supervised coreset selection methods.
- Score: 15.40868763786354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators offer a powerful paradigm for solving partial differential equations (PDEs) that cannot be solved analytically by learning mappings between function spaces. However, there are two main bottlenecks in training neural operators: they require a significant amount of training data to learn these mappings, and this data needs to be labeled, which can only be accessed via expensive simulations with numerical solvers. To alleviate both of these issues simultaneously, we propose PICore, an unsupervised coreset selection framework that identifies the most informative training samples without requiring access to ground-truth PDE solutions. PICore leverages a physics-informed loss to select unlabeled inputs by their potential contribution to operator learning. After selecting a compact subset of inputs, only those samples are simulated using numerical solvers to generate labels, reducing annotation costs. We then train the neural operator on the reduced labeled dataset, significantly decreasing training time as well. Across four diverse PDE benchmarks and multiple coreset selection strategies, PICore achieves up to 78% average increase in training efficiency relative to supervised coreset selection methods with minimal changes in accuracy. We provide code at https://github.com/Asatheesh6561/PICore.
Related papers
- Zero-Shot Coreset Selection: Efficient Pruning for Unlabeled Data [22.45812577928658]
Coreset selection aims to find a representative subset of data to train models.
ZCore is a method that efficiently selects coresets without ground truth labels or training on candidate data.
We evaluate ZCore on four datasets and outperform several state-of-the-art label-based methods.
arXiv Detail & Related papers (2024-11-22T21:17:49Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
arXiv Detail & Related papers (2024-08-19T13:02:06Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
In this work, seeking data efficiency, we design unsupervised pretraining for PDE operator learning.<n>We mine unlabeled PDE data without simulated solutions, and we pretrain neural operators with physics-inspired reconstruction-based proxy tasks.<n>Our method is highly data-efficient, more generalizable, and even outperforms conventional vision-pretrained models.
arXiv Detail & Related papers (2024-02-24T06:27:33Z) - D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
Data Pruning [70.98091101459421]
Coreset selection seeks to select a subset of the training data so as to maximize the performance of models trained on this subset, also referred to as coreset.
We propose a novel pruning algorithm, D2 Pruning, that uses forward and reverse message passing over this dataset graph for coreset selection.
Results show that D2 Pruning improves coreset selection over previous state-of-the-art methods for up to 70% pruning rates.
arXiv Detail & Related papers (2023-10-11T23:01:29Z) - Discrete Key-Value Bottleneck [95.61236311369821]
Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant.
One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning.
Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks.
We propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes.
arXiv Detail & Related papers (2022-07-22T17:52:30Z) - Mixing Deep Learning and Multiple Criteria Optimization: An Application
to Distributed Learning with Multiple Datasets [0.0]
Training phase is the most important stage during the machine learning process.
We develop a multiple criteria optimization model in which each criterion measures the distance between the output associated with a specific input and its label.
We propose a scalarization approach to implement this model and numerical experiments in digit classification using MNIST data.
arXiv Detail & Related papers (2021-12-02T16:00:44Z) - Low Budget Active Learning via Wasserstein Distance: An Integer
Programming Approach [81.19737119343438]
Active learning is the process of training a model with limited labeled data by selecting a core subset of an unlabeled data pool to label.
We propose a new integer optimization problem for selecting a core set that minimizes the discrete Wasserstein distance from the unlabeled pool.
Our strategy requires high-quality latent features which we obtain by unsupervised learning on the unlabeled pool.
arXiv Detail & Related papers (2021-06-05T21:25:03Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.