論文の概要: GPU Benchmark through QPE Emulator with cuQuantum for Practical Quantum Applications
- arxiv url: http://arxiv.org/abs/2507.17175v1
- Date: Wed, 23 Jul 2025 03:42:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.847032
- Title: GPU Benchmark through QPE Emulator with cuQuantum for Practical Quantum Applications
- Title(参考訳): 実用量子応用のためのcuQuantumを用いたQPEエミュレータによるGPUベンチマーク
- Authors: Takaki Akiba, Youhi Morii,
- Abstract要約: 入力と出力はHDF5で処理され、可能な限り容易に処理できるようになった。
開発されたアプリケーションはGPU能力を最大限に活用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum algorithm of Quantum Phase Estimation (QPE) was implemented to make the maximum use of GPU emulation with cuQuantum and CUDA Toolkit by NVIDIA. The input and output were handled by HDF5 to make the process as easy as possible. The computational time, VRAM usage, value error, and overhead was evaluated against the developed application. VRAM usage and the profiler analysis suggested that the developed application could make the maximum use of GPU capability.
- Abstract(参考訳): 量子位相推定(QPE)の量子アルゴリズムは、NVIDIAによるcuQuantumとCUDA ToolkitによるGPUエミュレーションを最大限活用するために実装された。
入力と出力はHDF5で処理され、可能な限り容易に処理できるようになった。
開発したアプリケーションに対して,計算時間,VRAM使用量,値誤差,オーバーヘッドを評価した。
VRAM使用率とプロファイラ分析により、開発したアプリケーションがGPU能力を最大限に活用できることが示唆された。
関連論文リスト
- Q-GEAR: Improving quantum simulation framework [0.28402080392117757]
本稿では,Qiskit量子回路をCuda-Qカーネルに変換するソフトウェアフレームワークであるQ-Gearを紹介する。
Q-GearはCPUとGPUベースのシミュレーションをそれぞれ、最小のコーディング労力で2桁と10倍に高速化する。
論文 参考訳(メタデータ) (2025-04-04T22:17:51Z) - QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge [55.75103034526652]
ASIC のハードウェアアクセラレーションによる MDE モデルの定量化を後学習量子化に応用した QuartDepth を提案する。
提案手法では,重みとアクティベーションの両方を4ビット精度で定量化し,モデルサイズと計算コストを削減する。
我々は、カーネル融合とカスタマイズされた命令プログラム性をサポートすることにより、フレキシブルでプログラム可能なハードウェアアクセラレータを設計する。
論文 参考訳(メタデータ) (2025-03-20T21:03:10Z) - GPU-accelerated Effective Hamiltonian Calculator [70.12254823574538]
本研究では,非摂動解析対角化法(NPAD)とマグナス拡大法に着想を得た数値解析手法を提案する。
私たちの数値技術は、オープンソースPythonパッケージとして、$rm qCH_eff$で利用可能です。
論文 参考訳(メタデータ) (2024-11-15T06:33:40Z) - Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
本稿では,複数グラフィクス処理ユニット(GPU)を用いた高次ハートリー・フォックエネルギーと解析勾配の解法を最適化したアルゴリズムと実装を提案する。
このアルゴリズムは特に、中小分子(10-100原子)の高スループット初期分子動力学シミュレーションのために設計されている。
論文 参考訳(メタデータ) (2024-07-29T00:14:10Z) - Hybrid quantum programming with PennyLane Lightning on HPC platforms [0.0]
PennyLaneのLightningスイートは、CPU、GPU、HPCネイティブアーキテクチャとワークロードをターゲットにした高性能なステートベクタシミュレータのコレクションである。
QAOA、VQE、合成ワークロードなどの量子アプリケーションは、サポート対象の古典的コンピューティングアーキテクチャを実証するために実装されている。
論文 参考訳(メタデータ) (2024-03-04T22:01:03Z) - QCLAB++: Simulating Quantum Circuits on GPUs [0.0]
我々は、GPU加速量子回路シミュレーションのための軽量で完全に測定されたC++パッケージであるqclab++を紹介する。
qclab++は高度に最適化されたゲートシミュレーションアルゴリズムによって性能と数値安定性を設計する。
また、qclab++を模倣した構文を持つMatlab用の量子回路ツールボックスであるqclabを紹介する。
論文 参考訳(メタデータ) (2023-02-28T22:56:48Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - Performance Evaluation and Acceleration of the QTensor Quantum Circuit
Simulator on GPUs [6.141912076989479]
我々は、NumPy、PyTorch、CuPyのバックエンドを実装し、ベンチマークを行い、CPUまたはGPUにテンソルシミュレーションの最適な割り当てを見つける。
ベンチマークしたQAOA回路のCPU上のNumPyベースライン上でのGPUの高速化により,MaxCut問題を解く。
論文 参考訳(メタデータ) (2022-04-12T19:03:44Z) - TensorLy-Quantum: Quantum Machine Learning with Tensor Methods [67.29221827422164]
PyTorch APIを採用した量子回路シミュレーションのためのPythonライブラリを作成します。
Ly-Quantumは、単一のGPU上で数百のキュービット、複数のGPU上で数千のキュービットにスケールすることができる。
論文 参考訳(メタデータ) (2021-12-19T19:26:17Z) - Fast quantum circuit simulation using hardware accelerated general
purpose libraries [69.43216268165402]
CuPyは、GPUベースの量子回路向けに開発された汎用ライブラリ(線形代数)である。
上位回路の場合、スピードアップは約2倍、量子乗算器の場合、最先端のC++ベースのシミュレータと比べて約22倍である。
論文 参考訳(メタデータ) (2021-06-26T10:41:43Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。