GPU Benchmark through QPE Emulator with cuQuantum for Practical Quantum Applications
- URL: http://arxiv.org/abs/2507.17175v1
- Date: Wed, 23 Jul 2025 03:42:30 GMT
- Title: GPU Benchmark through QPE Emulator with cuQuantum for Practical Quantum Applications
- Authors: Takaki Akiba, Youhi Morii,
- Abstract summary: The input and output were handled by HDF5 to make the process as easy as possible.<n>The developed application could make the maximum use of GPU capability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum algorithm of Quantum Phase Estimation (QPE) was implemented to make the maximum use of GPU emulation with cuQuantum and CUDA Toolkit by NVIDIA. The input and output were handled by HDF5 to make the process as easy as possible. The computational time, VRAM usage, value error, and overhead was evaluated against the developed application. VRAM usage and the profiler analysis suggested that the developed application could make the maximum use of GPU capability.
Related papers
- Q-GEAR: Improving quantum simulation framework [0.28402080392117757]
We introduce Q-Gear, a software framework that transforms Qiskit quantum circuits into Cuda-Q kernels.<n>Q-Gear accelerates both CPU and GPU based simulations by respectively two orders of magnitude and ten times with minimal coding effort.
arXiv Detail & Related papers (2025-04-04T22:17:51Z) - QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge [55.75103034526652]
We propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs.<n>Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost.<n>We design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability.
arXiv Detail & Related papers (2025-03-20T21:03:10Z) - GPU-accelerated Effective Hamiltonian Calculator [70.12254823574538]
We present numerical techniques inspired by Nonperturbative Analytical Diagonalization (NPAD) and the Magnus expansion for the efficient calculation of effective Hamiltonians.<n>Our numerical techniques are available as an open-source Python package, $rm qCH_eff$.
arXiv Detail & Related papers (2024-11-15T06:33:40Z) - Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock energies and analytic gradients using multiple Graphics Processing Units (GPUs)
The algorithm is especially designed for high throughput emphab initio molecular dynamics simulations of small and medium size molecules (10-100 atoms)
arXiv Detail & Related papers (2024-07-29T00:14:10Z) - Hybrid quantum programming with PennyLane Lightning on HPC platforms [0.0]
PennyLane's Lightning suite is a collection of high-performance state-vector simulators targeting CPU, GPU, and HPC-native architectures and workloads.
Quantum applications such as QAOA, VQE, and synthetic workloads are implemented to demonstrate the supported classical computing architectures.
arXiv Detail & Related papers (2024-03-04T22:01:03Z) - QCLAB++: Simulating Quantum Circuits on GPUs [0.0]
We introduce qclab++, a light-weight, fully-templated C++ package for GPU-accelerated quantum circuit simulations.
qclab++ is designed for performance and numerical stability through highly optimized gate simulation algorithms.
We also introduce qclab, a quantum circuit toolbox for Matlab with a syntax that mimics qclab++.
arXiv Detail & Related papers (2023-02-28T22:56:48Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
We propose MAPLE-Edge, an edge device-oriented extension of MAPLE, the state-of-the-art latency predictor for general purpose hardware.
Compared to MAPLE, MAPLE-Edge can describe the runtime and target device platform using a much smaller set of CPU performance counters.
We also demonstrate that unlike MAPLE which performs best when trained on a pool of devices sharing a common runtime, MAPLE-Edge can effectively generalize across runtimes.
arXiv Detail & Related papers (2022-04-27T14:00:48Z) - Performance Evaluation and Acceleration of the QTensor Quantum Circuit
Simulator on GPUs [6.141912076989479]
We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU.
Our method achieves $176times$ speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem.
arXiv Detail & Related papers (2022-04-12T19:03:44Z) - TensorLy-Quantum: Quantum Machine Learning with Tensor Methods [67.29221827422164]
We create a Python library for quantum circuit simulation that adopts the PyTorch API.
Ly-Quantum can scale to hundreds of qubits on a single GPU and thousands of qubits on multiple GPU.
arXiv Detail & Related papers (2021-12-19T19:26:17Z) - Fast quantum circuit simulation using hardware accelerated general
purpose libraries [69.43216268165402]
CuPy is a general purpose library (linear algebra) developed specifically for GPU-based quantum circuits.
For supremacy circuits the speedup is around 2x, and for quantum multipliers almost 22x compared to state-of-the-art C++-based simulators.
arXiv Detail & Related papers (2021-06-26T10:41:43Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.