Spintronic Bayesian Hardware Driven by Stochastic Magnetic Domain Wall Dynamics
- URL: http://arxiv.org/abs/2507.17193v1
- Date: Wed, 23 Jul 2025 04:39:04 GMT
- Title: Spintronic Bayesian Hardware Driven by Stochastic Magnetic Domain Wall Dynamics
- Authors: Tianyi Wang, Bingqian Dai, Kin Wong, Yaochen Li, Yang Cheng, Qingyuan Shu, Haoran He, Puyang Huang, Hanshen Huang, Kang L. Wang,
- Abstract summary: Probabilistic neural networks (PNNs) offer strong predictive capabilities but produce deterministic outputs without inherent uncertainty estimation.<n>Traditional CMOS are inherently designed for deterministic operation and actively suppress intrinsic randomness.<n>We introduce a Magnetic Probabilistic Computing (MPC) platform that leverages intrinsic magneticity for uncertainty-aware computing.
- Score: 7.54910350238081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As artificial intelligence (AI) advances into diverse applications, ensuring reliability of AI models is increasingly critical. Conventional neural networks offer strong predictive capabilities but produce deterministic outputs without inherent uncertainty estimation, limiting their reliability in safety-critical domains. Probabilistic neural networks (PNNs), which introduce randomness, have emerged as a powerful approach for enabling intrinsic uncertainty quantification. However, traditional CMOS architectures are inherently designed for deterministic operation and actively suppress intrinsic randomness. This poses a fundamental challenge for implementing PNNs, as probabilistic processing introduces significant computational overhead. To address this challenge, we introduce a Magnetic Probabilistic Computing (MPC) platform-an energy-efficient, scalable hardware accelerator that leverages intrinsic magnetic stochasticity for uncertainty-aware computing. This physics-driven strategy utilizes spintronic systems based on magnetic domain walls (DWs) and their dynamics to establish a new paradigm of physical probabilistic computing for AI. The MPC platform integrates three key mechanisms: thermally induced DW stochasticity, voltage controlled magnetic anisotropy (VCMA), and tunneling magnetoresistance (TMR), enabling fully electrical and tunable probabilistic functionality at the device level. As a representative demonstration, we implement a Bayesian Neural Network (BNN) inference structure and validate its functionality on CIFAR-10 classification tasks. Compared to standard 28nm CMOS implementations, our approach achieves a seven orders of magnitude improvement in the overall figure of merit, with substantial gains in area efficiency, energy consumption, and speed. These results underscore the MPC platform's potential to enable reliable and trustworthy physical AI systems.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Magneto-Ionic Hardware Security Primitives: Embedding Data Protection at the Material Level [39.58317527488534]
Big Data has heightened the demand for robust, energy-efficient security hardware capable of withstanding cyber threats.<n>Here, we present a magneto-ionic strategy for hardware-level security based on fully selective voltage-controlled N3- ion migration within pre-defined, initially paramagnetic FeCoN dots.<n>The resulting architecture combines tamper resistance, low energy consumption, and scalability, marking a significant leap toward next-generation hardware security rooted in emergent magnetic phenomena.
arXiv Detail & Related papers (2025-07-15T15:36:07Z) - Quantum Circuit Learning Using Non-Integrable System Dynamics [0.0]
Quantum machine learning aims to improve the performance of machine learning methods by leveraging the properties of quantum computers.<n>Recent encoding methods have demonstrated that the expressive power of learning models can be enhanced by applying exponentially large magnetic fields proportional to the number of qubits.<n>Here, we propose a QCL method that leverages a non-integrable Hamiltonian for encoding, aiming to achieve both enhanced expressive power and practical feasibility.
arXiv Detail & Related papers (2025-04-25T05:37:34Z) - Efficient and Trustworthy Block Propagation for Blockchain-enabled Mobile Embodied AI Networks: A Graph Resfusion Approach [60.80257080226662]
We propose a graph Resfusion model-based trustworthy block propagation optimization framework for consortium blockchain-enabled MEANETs.<n>Specifically, we propose an innovative trust calculation mechanism based on the trust cloud model.<n>By leveraging the strengths of graph neural networks and diffusion models, we develop a graph Resfusion model to effectively and adaptively generate the optimal block propagation trajectory.
arXiv Detail & Related papers (2025-01-26T07:47:05Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
This paper introduces the Federated Learning-Quantum Dynamic Spiking Neural Networks (FL-QDSNNs) framework.<n>Central to our framework is a novel dynamic threshold mechanism for activating quantum gates in Quantum Spiking Neural Networks (QSNNs)<n>Our FL-QDSNNs framework has demonstrated superior accuracies-up to 94% on the Iris dataset and markedly outperforms existing Quantum Federated Learning (QFL) approaches.
arXiv Detail & Related papers (2024-12-03T09:08:33Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.<n>We reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.<n>Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Correct-by-Construction Control for Stochastic and Uncertain Dynamical
Models via Formal Abstractions [44.99833362998488]
We develop an abstraction framework that can be used to solve this problem under various modeling assumptions.
We use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees for satisfying the given specification.
We then show that, by construction, we can refine this policy into a feedback controller for which these guarantees carry over to the dynamical model.
arXiv Detail & Related papers (2023-11-16T11:03:54Z) - Machine Learning Quantum Systems with Magnetic p-bits [0.0]
The slowing down of Moore's Law has led to a crisis as the computing workloads of Artificial Intelligence (AI) algorithms continue skyrocketing.
There is an urgent need for scalable and energy-efficient hardware catering to the unique requirements of AI algorithms and applications.
Probability computing with p-bits emerged as a scalable, domain-specific, and energy-efficient computing paradigm.
arXiv Detail & Related papers (2023-10-10T14:54:57Z) - SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFP devices serve as excellent carriers for binary neural network (BNN) computations.
We propose SupeRBNN, an AQFP-based randomized BNN acceleration framework.
We show that our design achieves an energy efficiency of approximately 7.8x104 times higher than that of the ReRAM-based BNN framework.
arXiv Detail & Related papers (2023-09-21T16:14:42Z) - Enhancing Energy Efficiency and Reliability in Autonomous Systems
Estimation using Neuromorphic Approach [0.0]
This study focuses on introducing an estimation framework based on spike coding theories and spiking neural networks (SNN)
We propose an SNN-based Kalman filter (KF), a fundamental and widely adopted optimal strategy for well-defined linear systems.
Based on the modified sliding innovation filter (MSIF) we present a robust strategy called SNN-MSIF.
arXiv Detail & Related papers (2023-07-16T06:47:54Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.