HypoChainer: A Collaborative System Combining LLMs and Knowledge Graphs for Hypothesis-Driven Scientific Discovery
- URL: http://arxiv.org/abs/2507.17209v1
- Date: Wed, 23 Jul 2025 05:02:54 GMT
- Title: HypoChainer: A Collaborative System Combining LLMs and Knowledge Graphs for Hypothesis-Driven Scientific Discovery
- Authors: Haoran Jiang, Shaohan Shi, Yunjie Yao, Chang Jiang, Quan Li,
- Abstract summary: We propose HypoChainer, a visualization framework that integrates human expertise, knowledge graphs, and reasoning.<n> HypoChainer operates in three stages: First, exploration and contextualization -- experts use retrieval-augmented LLMs (RAGs) and dimensionality reduction.<n>Second, hypothesis chain formation -- experts iteratively examine KG relationships around predictions and semantically linked entities.<n>Third, validation prioritization -- refined hypotheses are filtered based on KG-supported evidence to identify high-priority candidates for experimentation.
- Score: 4.020865072189471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern scientific discovery faces growing challenges in integrating vast and heterogeneous knowledge critical to breakthroughs in biomedicine and drug development. Traditional hypothesis-driven research, though effective, is constrained by human cognitive limits, the complexity of biological systems, and the high cost of trial-and-error experimentation. Deep learning models, especially graph neural networks (GNNs), have accelerated prediction generation, but the sheer volume of outputs makes manual selection for validation unscalable. Large language models (LLMs) offer promise in filtering and hypothesis generation, yet suffer from hallucinations and lack grounding in structured knowledge, limiting their reliability. To address these issues, we propose HypoChainer, a collaborative visualization framework that integrates human expertise, LLM-driven reasoning, and knowledge graphs (KGs) to enhance hypothesis generation and validation. HypoChainer operates in three stages: First, exploration and contextualization -- experts use retrieval-augmented LLMs (RAGs) and dimensionality reduction to navigate large-scale GNN predictions, assisted by interactive explanations. Second, hypothesis chain formation -- experts iteratively examine KG relationships around predictions and semantically linked entities, refining hypotheses with LLM and KG suggestions. Third, validation prioritization -- refined hypotheses are filtered based on KG-supported evidence to identify high-priority candidates for experimentation, with visual analytics further strengthening weak links in reasoning. We demonstrate HypoChainer's effectiveness through case studies in two domains and expert interviews, highlighting its potential to support interpretable, scalable, and knowledge-grounded scientific discovery.
Related papers
- Bayes-Entropy Collaborative Driven Agents for Research Hypotheses Generation and Optimization [4.469102316542763]
This paper proposes a multi-agent collaborative framework called HypoAgents.<n>It generates hypotheses through diversity sampling and establishes prior beliefs.<n>It then employs etrieval-augmented generation (RAG) to gather external literature evidence.<n>It identifies high-uncertainty hypotheses using information entropy $H = - sum p_ilog p_i$ and actively refines them.
arXiv Detail & Related papers (2025-08-03T13:05:32Z) - Controllable Logical Hypothesis Generation for Abductive Reasoning in Knowledge Graphs [54.596180382762036]
Abductive reasoning in knowledge graphs aims to generate plausible logical hypotheses from observed entities.<n>Due to a lack of controllability, a single observation may yield numerous plausible but redundant or irrelevant hypotheses.<n>We introduce the task of controllable hypothesis generation to improve the practical utility of abductive reasoning.
arXiv Detail & Related papers (2025-05-27T09:36:47Z) - MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search [93.64235254640967]
Large language models (LLMs) have shown promise in automating scientific hypothesis generation.<n>We define the novel task of fine-grained scientific hypothesis discovery.<n>We propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis.
arXiv Detail & Related papers (2025-05-25T16:13:46Z) - Toward Reliable Scientific Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models [18.850296587858946]
We introduce TruthHypo, a benchmark for assessing the capabilities of large language models in generating truthful hypotheses.<n>KnowHD is a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge.
arXiv Detail & Related papers (2025-05-20T16:49:40Z) - Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
Large language models (LLMs) can identify novel research directions by analyzing existing knowledge.
LLMs are prone to generating hallucinations'', outputs that are plausible-sounding but factually incorrect.
We propose KG-CoI, a system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs.
arXiv Detail & Related papers (2024-11-04T18:50:00Z) - Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
We formulate a novel task where the input is a partial causal graph with missing variables, and the output is a hypothesis about the missing variables to complete the partial graph.
We show the strong ability of LLMs to hypothesize the mediation variables between a cause and its effect.
We also observe surprising results where some of the open-source models outperform the closed GPT-4 model.
arXiv Detail & Related papers (2024-09-04T10:37:44Z) - Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
We focus on a task called inductive few-shot knowledge graph completion (I-FKGC)
Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem.
We present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions.
In the second module, based on the hypothesis, we propose a graph attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis.
arXiv Detail & Related papers (2024-08-03T13:37:40Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses [20.635793525894872]
We develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework to improve the accuracy and reliability of Large Language Models (LLMs)
Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs.
Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability.
arXiv Detail & Related papers (2023-12-26T04:49:56Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
Large Language Models (LLMs) hold a wealth of global and interdisciplinary knowledge that promises to break down information barriers.
We construct a dataset consist of background knowledge and hypothesis pairs from biomedical literature.
We evaluate the hypothesis generation capabilities of various top-tier instructed models in zero-shot, few-shot, and fine-tuning settings.
arXiv Detail & Related papers (2023-11-10T10:03:49Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
This work proposes the first dataset for social science academic hypotheses discovery.
Unlike previous settings, the new dataset requires (1) using open-domain data (raw web corpus) as observations; and (2) proposing hypotheses even new to humanity.
A multi- module framework is developed for the task, including three different feedback mechanisms to boost performance.
arXiv Detail & Related papers (2023-09-06T05:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.