論文の概要: From Points to Spheres: A Geometric Reinterpretation of Variational Autoencoders
- arxiv url: http://arxiv.org/abs/2507.17255v2
- Date: Thu, 21 Aug 2025 12:51:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 14:03:17.21522
- Title: From Points to Spheres: A Geometric Reinterpretation of Variational Autoencoders
- Title(参考訳): 点から球へ:変分オートエンコーダの幾何学的再解釈
- Authors: Songxuan Shi,
- Abstract要約: 変分オートエンコーダは一般に確率的推論の観点から理解される。
本研究では,確率論的視点を補完し,その直感性を向上する新しい幾何学的解釈を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Autoencoder is typically understood from the perspective of probabilistic inference. In this work, we propose a new geometric reinterpretation which complements the probabilistic view and enhances its intuitiveness. We demonstrate that the proper construction of semantic manifolds arises primarily from the constraining effect of the KL divergence on the encoder. We view the latent representations as a Gaussian ball rather than deterministic points. Under the constraint of KL divergence, Gaussian ball regularizes the latent space, promoting a more uniform distribution of encodings. Furthermore, we show that reparameterization establishes a critical contractual mechanism between the encoder and decoder, enabling the decoder to learn how to reconstruct from these stochastic regions. We further connect this viewpoint with VQ-VAE, offering a unified perspective: VQ-VAE can be seen as an autoencoder where encodings are constrained to a set of cluster centers, with its generative capability arising from the compactness rather than its stochasticity. This geometric framework provides a new lens for understanding how VAE shapes the latent geometry to enable effective generation.
- Abstract(参考訳): 変分オートエンコーダは一般に確率的推論の観点から理解される。
本研究では,確率論的視点を補完し,その直感性を向上する新しい幾何学的解釈を提案する。
意味多様体の適切な構成は、主にエンコーダ上のKL発散の制約効果から生じる。
我々は、潜在表現を決定論的な点ではなくガウス球とみなす。
KL の発散の制約の下で、ガウス球は潜在空間を正則化し、符号化のより均一な分布を促進する。
さらに、再パラメータ化はエンコーダとデコーダの間に重要な収縮機構を確立し、デコーダがこれらの確率領域から再構成する方法を学ぶことができることを示す。
VQ-VAEは、符号化がクラスタセンターの集合に制約されるオートエンコーダとして見ることができ、その生成能力は、その確率性よりもコンパクト性から生じる。
この幾何学的枠組みは、VAEが潜在幾何学をどのように形成して効果的な生成を可能にするかを理解するための新しいレンズを提供する。
関連論文リスト
- Cross-Layer Discrete Concept Discovery for Interpreting Language Models [13.842670153893977]
クロス層VQ-VAEは、ベクトル量子化を使用して層間の表現をマッピングするフレームワークである。
本手法は,量子化中のトップk温度に基づくサンプリングとEMAコードブック更新を一意に組み合わせる。
論文 参考訳(メタデータ) (2025-06-24T22:43:36Z) - Interpretable Spectral Variational AutoEncoder (ISVAE) for time series
clustering [48.0650332513417]
可変オートエンコーダ(VAE)の出力にフィルタバンク(FB)の解釈可能なボトルネックを組み込んだ新しいモデルを導入する。
このアレンジメントは、入力信号の最も情報性の高いセグメントに参加するためにVAEを補完する。
VAEをこのFBに故意に拘束することにより、識別可能で分離可能で次元が縮小した符号化の開発を促進する。
論文 参考訳(メタデータ) (2023-10-18T13:06:05Z) - How to train your VAE [0.0]
変分オートエンコーダ(VAE)は、機械学習における生成モデリングと表現学習の基盤となっている。
本稿では,ELBO(エビデンス・ロウアー・バウンド)における重要な構成要素であるKLディバージェンス(Kulback-Leibler)の解釈について検討する。
提案手法は, ELBOを後続確率のガウス混合体で再定義し, 正規化項を導入し, テクスチャリアリズムを高めるためにPatchGAN識別器を用いる。
論文 参考訳(メタデータ) (2023-09-22T19:52:28Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
論文 参考訳(メタデータ) (2023-02-12T13:51:36Z) - CCVS: Context-aware Controllable Video Synthesis [95.22008742695772]
プレゼンテーションでは、古いビデオクリップから新しいビデオクリップを合成するための自己教師付き学習アプローチを紹介している。
時間的連続性のための文脈情報と微妙な制御のための補助情報に基づいて合成過程を規定する。
論文 参考訳(メタデータ) (2021-07-16T17:57:44Z) - Neighbor Embedding Variational Autoencoder [14.08587678497785]
本稿では,入力空間に近接する入力を符号化するために,エンコーダを明示的に制約する新しいモデルであるVAE(NE-VAE)を提案する。
我々の実験では、NE-VAEは定性的に異なる潜伏表現を生成できるが、ほとんどの潜伏次元はアクティブのままである。
論文 参考訳(メタデータ) (2021-03-21T09:49:12Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。