Compliance Brain Assistant: Conversational Agentic AI for Assisting Compliance Tasks in Enterprise Environments
- URL: http://arxiv.org/abs/2507.17289v3
- Date: Sat, 26 Jul 2025 21:24:32 GMT
- Title: Compliance Brain Assistant: Conversational Agentic AI for Assisting Compliance Tasks in Enterprise Environments
- Authors: Shitong Zhu, Chenhao Fang, Derek Larson, Neel Reddy Pochareddy, Rajeev Rao, Sophie Zeng, Yanqing Peng, Wendy Summer, Alex Goncalves, Arya Pudota, Hervé Robert,
- Abstract summary: Compliance Brain Assistant (CBA) is a conversational, agentic AI assistant designed to boost the efficiency of daily compliance tasks for personnel in enterprise environments.<n>To strike a good balance between response quality and latency, we design a user query router that can intelligently choose between FastTrack mode and FullAgentic mode.
- Score: 2.8724171056550256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Compliance Brain Assistant (CBA), a conversational, agentic AI assistant designed to boost the efficiency of daily compliance tasks for personnel in enterprise environments. To strike a good balance between response quality and latency, we design a user query router that can intelligently choose between (i) FastTrack mode: to handle simple requests that only need additional relevant context retrieved from knowledge corpora; and (ii) FullAgentic mode: to handle complicated requests that need composite actions and tool invocations to proactively discover context across various compliance artifacts, and/or involving other APIs/models for accommodating requests. A typical example would be to start with a user query, use its description to find a specific entity and then use the entity's information to query other APIs for curating and enriching the final AI response. Our experimental evaluations compared CBA against an out-of-the-box LLM on various real-world privacy/compliance-related queries targeting various personas. We found that CBA substantially improved upon the vanilla LLM's performance on metrics such as average keyword match rate (83.7% vs. 41.7%) and LLM-judge pass rate (82.0% vs. 20.0%). We also compared metrics for the full routing-based design against the `fast-track only` and `full-agentic` modes and found that it had a better average match-rate and pass-rate while keeping the run-time approximately the same. This finding validated our hypothesis that the routing mechanism leads to a good trade-off between the two worlds.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-V is a framework to generate a dataset of questions that mimic customer queries.<n>Our synthetic data can improve agent performance on actual customer queries.
arXiv Detail & Related papers (2024-11-28T19:36:11Z) - SRSA: A Cost-Efficient Strategy-Router Search Agent for Real-world Human-Machine Interactions [3.5725872564627785]
In real-world situations, users often input contextual and highly personalized queries to chatbots.
Previous research has not focused specifically on authentic human-machine dialogue scenarios.
To address these gaps, we propose a Strategy-based Search Agent (SRSA)
SRSA routing different queries to appropriate search strategies and enabling fine-grained serial searches to obtain high-quality results at a relatively low cost.
arXiv Detail & Related papers (2024-11-21T20:41:55Z) - Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL [0.0]
We utilize OpenAI's GPT-4 model within a retrieval-augmented generation (RAG) framework.
Business context document is enriched with a business context document, to transform NLQs into Structured Query Language queries.
Performance achieved a maximum of 85% when high complexity queries are excluded.
arXiv Detail & Related papers (2024-06-15T17:07:31Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
Join order selection (JOS) is the problem of ordering join operations to minimize total query execution cost.
We present JoinGym, a query optimization environment for bushy reinforcement learning (RL)
Under the hood, JoinGym simulates a query plan's cost by looking up intermediate result cardinalities from a pre-computed dataset.
arXiv Detail & Related papers (2023-07-21T17:00:06Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
We propose a unified coordinating framework to efficiently utilize existing ML-based agents.
We show that it can effectively utilize different ML-based agents and find better configurations with 1.414.1X speedups on the workload execution time.
arXiv Detail & Related papers (2023-03-10T05:27:23Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.