EarthLink: A Self-Evolving AI Agent for Climate Science
- URL: http://arxiv.org/abs/2507.17311v2
- Date: Thu, 24 Jul 2025 15:12:15 GMT
- Title: EarthLink: A Self-Evolving AI Agent for Climate Science
- Authors: Zijie Guo, Jiong Wang, Xiaoyu Yue, Wangxu Wei, Zhe Jiang, Wanghan Xu, Ben Fei, Wenlong Zhang, Xinyu Gu, Lijing Cheng, Jing-Jia Luo, Chao Li, Yaqiang Wang, Tao Chen, Wanli Ouyang, Fenghua Ling, Lei Bai,
- Abstract summary: We introduce EarthLink, the first AI agent designed as an interactive copilot for Earth scientists.<n>It automates the end-to-end research workflow, from planning and code generation to multi-scenario analysis.<n>In a multi-expert evaluation, EarthLink produced scientifically sound analyses and demonstrated an analytical competency.
- Score: 48.79195019138236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Earth science is at an inflection point. The vast, fragmented, and complex nature of Earth system data, coupled with increasingly sophisticated analytical demands, creates a significant bottleneck for rapid scientific discovery. Here we introduce EarthLink, the first AI agent designed as an interactive copilot for Earth scientists. It automates the end-to-end research workflow, from planning and code generation to multi-scenario analysis. Unlike static diagnostic tools, EarthLink can learn from user interaction, continuously refining its capabilities through a dynamic feedback loop. We validated its performance on a number of core scientific tasks of climate change, ranging from model-observation comparisons to the diagnosis of complex phenomena. In a multi-expert evaluation, EarthLink produced scientifically sound analyses and demonstrated an analytical competency that was rated as comparable to specific aspects of a human junior researcher's workflow. Additionally, its transparent, auditable workflows and natural language interface empower scientists to shift from laborious manual execution to strategic oversight and hypothesis generation. EarthLink marks a pivotal step towards an efficient, trustworthy, and collaborative paradigm for Earth system research in an era of accelerating global change. The system is accessible at our website https://earthlink.intern-ai.org.cn.
Related papers
- ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows [82.07367406991678]
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing.<n>Among these, computer-using agents are capable of interacting with operating systems as humans do.<n>We introduce ScienceBoard, which encompasses a realistic, multi-domain environment featuring dynamic and visually rich scientific software.
arXiv Detail & Related papers (2025-05-26T12:27:27Z) - From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery [43.31110556077432]
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery.<n>This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science.
arXiv Detail & Related papers (2025-05-19T15:41:32Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>World models offer high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
We introduce DISCOVERYWORLD, the first virtual environment for developing and benchmarking an agent's ability to perform complete cycles of novel scientific discovery.
It includes 120 different challenge tasks spanning eight topics each with three levels of difficulty and several parametric variations.
We find that strong baseline agents, that perform well in prior published environments, struggle on most DISCOVERYWORLD tasks.
arXiv Detail & Related papers (2024-06-10T20:08:44Z) - "Turing Tests" For An AI Scientist [0.0]
This paper proposes a "Turing test for an AI scientist" to assess whether an AI agent can conduct scientific research independently.
We propose seven benchmark tests that evaluate an AI agent's ability to make groundbreaking discoveries in various scientific domains.
arXiv Detail & Related papers (2024-05-22T05:14:27Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System [6.445323648941926]
Geoscience foundation models (GFMs) are a paradigm-shifting solution, integrating extensive cross-disciplinary data to enhance the simulation and understanding of Earth system dynamics.
The unique strengths of GFMs include flexible task specification, diverse input-output capabilities, and multi-modal knowledge representation.
This review offers a comprehensive overview of emerging geoscientific research paradigms, emphasizing the untapped opportunities at the intersection of advanced AI techniques and geoscience.
arXiv Detail & Related papers (2023-09-13T08:44:09Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Lessons from the Development of an Anomaly Detection Interface on the
Mars Perseverance Rover using the ISHMAP Framework [8.353815643035498]
We present the results of utilizing an alternative approach to machine learning based anomaly detection.
We report on over 18 months of in-context user research and co-design to define the key problems NASA scientists face when looking to detect and interpret spectral anomalies.
We develop a novel spectral anomaly detection toolkit for PIXL scientists that is highly accurate while maintaining strong transparency to scientific interpretation.
arXiv Detail & Related papers (2023-02-14T16:55:32Z) - Will Artificial Intelligence supersede Earth System and Climate Models? [0.0]
"Neural Earth System Modelling" (NESYM) is a new research branch in Earth and climate sciences.
We coin the term "NESYM" and highlight the necessity of a transdisciplinary discussion platform.
We examine the concurrent potential and pitfalls of Neural Earth System Modelling and discuss the open question whether artificial intelligence will not only infuse Earth system modelling, but ultimately render them obsolete.
arXiv Detail & Related papers (2021-01-22T14:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.