A Zero-overhead Flow for Security Closure
- URL: http://arxiv.org/abs/2507.17385v1
- Date: Wed, 23 Jul 2025 10:28:15 GMT
- Title: A Zero-overhead Flow for Security Closure
- Authors: Mohammad Eslami, Ashira Johara, Kyungbin Park, Samuel Pagliarini,
- Abstract summary: Security has been largely neglected when evaluating the Quality of Results (QoR) from physical synthesis.<n>We propose a modified ASIC design flow that is security-aware and does not degrade QoR for the sake of security improvement.
- Score: 1.737435659602194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the traditional Application-Specific Integrated Circuit (ASIC) design flow, the concept of timing closure implies to reach convergence during physical synthesis such that, under a given area and power budget, the design works at the targeted frequency. However, security has been largely neglected when evaluating the Quality of Results (QoR) from physical synthesis. In general, commercial place & route tools do not understand security goals. In this work, we propose a modified ASIC design flow that is security-aware and, differently from prior research, does not degrade QoR for the sake of security improvement. Therefore, we propose a first-of-its-kind zero-overhead flow for security closure. Our flow is concerned with two distinct threat models: (i) insertion of Hardware Trojans (HTs) and (ii) physical probing/fault injection. Importantly, the flow is entirely executed within a commercial place & route engine and is scalable. In several metrics, our security-aware flow achieves the best-known results for the ISPD`22 set of benchmark circuits while incurring negligible design overheads due to security-related strategies. Finally, we open source the entire methodology (as a set of scripts) and also share the protected circuits (as design databases) for the benefit of the hardware security community.
Related papers
- SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - EILID: Execution Integrity for Low-end IoT Devices [12.193184827858326]
EILID is a hybrid architecture that ensures software execution integrity on low-end devices.<n>It is built atop CASU, a prevention-based (i.e., active) hybrid Root-of-Trust (RoT) that guarantees software immutability.
arXiv Detail & Related papers (2025-01-16T00:31:39Z) - ACRIC: Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
Recent security incidents in safety-critical industries exposed how the lack of proper message authentication enables attackers to inject malicious commands or alter system behavior.<n>These shortcomings have prompted new regulations that emphasize the pressing need to strengthen cybersecurity.<n>We introduce ACRIC, a message authentication solution to secure legacy industrial communications.
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - A Hardware-Friendly Shuffling Countermeasure Against Side-Channel Attacks for Kyber [4.413722095749492]
CRYSTALS-Kyber has been standardized as the only key-encapsulation mechanism (KEM) scheme by NIST to withstand attacks by large-scale quantum computers.<n>We propose a secure and efficient hardware implementation for Kyber by incorporating a novel compact shuffling architecture.
arXiv Detail & Related papers (2024-07-02T17:29:33Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.<n>To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.<n>Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - HOACS: Homomorphic Obfuscation Assisted Concealing of Secrets to Thwart Trojan Attacks in COTS Processor [0.6874745415692134]
We propose a software-oriented countermeasure to ensure the confidentiality of secret assets against hardware Trojans.
The proposed solution does not require any supply chain entity to be trusted and does not require analysis or modification of the IC design.
We have implemented the proposed solution to protect the secret key within the Advanced Encryption Standard (AES) program and presented a detailed security analysis.
arXiv Detail & Related papers (2024-02-15T04:33:30Z) - On the Prediction of Hardware Security Properties of HLS Designs Using Graph Neural Networks [1.6951945839990796]
We propose an evaluation methodology of hardware security properties of HLS-produced designs using state-of-the-art Graph Neural Network (GNN) approaches.
We show that GNNs can be efficiently trained to predict important hardware security met-rics concerning fault attacks.
The proposed method predicts the fault vulnerability metrics of the HLS-based designs with high R-squared scores and achieves huge speedup.
arXiv Detail & Related papers (2023-12-11T10:13:53Z) - Security and Reliability Evaluation of Countermeasures implemented using High-Level Synthesis [0.0]
Side Channel Analysis (SCA) and Fault Injection (FI) attacks are powerful hardware attacks.
The lack of security and reliability driven optimizations in HLS tools makes it necessary for the HLS-based designs to validate that the properties of the algorithm and the countermeasures have not been compromised.
arXiv Detail & Related papers (2023-12-11T10:13:47Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bell is a model-agnostic red-teaming tool for T2I diffusion models.
It identifies problematic prompts for diffusion models with the corresponding generation of inappropriate content.
Our results show that Ring-A-Bell, by manipulating safe prompting benchmarks, can transform prompts that were originally regarded as safe to evade existing safety mechanisms.
arXiv Detail & Related papers (2023-10-16T02:11:20Z) - Breaking On-Chip Communication Anonymity using Flow Correlation Attacks [2.977255700811213]
We develop and perform a machine learning (ML)-based flow correlation attack on existing anonymous routing techniques in Network-on-Chip (NoC) systems.<n>We propose a novel, lightweight anonymous routing protocol featuring outbound traffic tunneling and traffic obfuscation.<n>This protocol is designed to provide robust defense against ML-based flow correlation attacks, ensuring both packet-level and flow-level anonymity.
arXiv Detail & Related papers (2023-09-27T14:32:39Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - On Borrowed Time -- Preventing Static Side-Channel Analysis [13.896152066919036]
adversaries exploit leakage or response behaviour of integrated circuits in a static state.<n>Members of this class include Static Power Side-Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and Impedance Analysis (IA)
arXiv Detail & Related papers (2023-07-18T06:36:04Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.