論文の概要: Dynamic Scoring with Enhanced Semantics for Training-Free Human-Object Interaction Detection
- arxiv url: http://arxiv.org/abs/2507.17456v1
- Date: Wed, 23 Jul 2025 12:30:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.988317
- Title: Dynamic Scoring with Enhanced Semantics for Training-Free Human-Object Interaction Detection
- Title(参考訳): 強化されたセマンティックスを用いた動的スコーリングによる人-物体相互作用検出の訓練
- Authors: Francesco Tonini, Lorenzo Vaquero, Alessandro Conti, Cigdem Beyan, Elisa Ricci,
- Abstract要約: 人間オブジェクトインタラクション(HOI)検出は、画像内の人間と物体を識別し、その相互作用を解釈することを目的としている。
既存のHOIメソッドは、視覚的手がかりからインタラクションを学ぶために手動アノテーションを備えた大規模なデータセットに大きく依存している。
本稿では,強化意味論を用いた動的スコーリングのための新しいトレーニング不要なHOI検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 51.52749744031413
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human-Object Interaction (HOI) detection aims to identify humans and objects within images and interpret their interactions. Existing HOI methods rely heavily on large datasets with manual annotations to learn interactions from visual cues. These annotations are labor-intensive to create, prone to inconsistency, and limit scalability to new domains and rare interactions. We argue that recent advances in Vision-Language Models (VLMs) offer untapped potential, particularly in enhancing interaction representation. While prior work has injected such potential and even proposed training-free methods, there remain key gaps. Consequently, we propose a novel training-free HOI detection framework for Dynamic Scoring with enhanced semantics (DYSCO) that effectively utilizes textual and visual interaction representations within a multimodal registry, enabling robust and nuanced interaction understanding. This registry incorporates a small set of visual cues and uses innovative interaction signatures to improve the semantic alignment of verbs, facilitating effective generalization to rare interactions. Additionally, we propose a unique multi-head attention mechanism that adaptively weights the contributions of the visual and textual features. Experimental results demonstrate that our DYSCO surpasses training-free state-of-the-art models and is competitive with training-based approaches, particularly excelling in rare interactions. Code is available at https://github.com/francescotonini/dysco.
- Abstract(参考訳): 人間オブジェクトインタラクション(HOI)検出は、画像内の人間と物体を識別し、その相互作用を解釈することを目的としている。
既存のHOIメソッドは、視覚的手がかりからインタラクションを学ぶために手動アノテーションを備えた大規模なデータセットに大きく依存している。
これらのアノテーションは、作成に労力がかかり、一貫性を損なう傾向があり、新しいドメインやまれな相互作用にスケーラビリティを制限します。
近年のVLM(Vision-Language Models)の進歩は、特に相互作用表現の強化において、未解決の可能性を秘めていると論じる。
以前の研究ではそのような可能性を注入し、トレーニングなしの手法も提案されているが、重要なギャップは残されている。
そこで本稿では,マルチモーダルレジストリ内のテキストおよび視覚的インタラクション表現を効果的に活用し,堅牢かつニュアンスのあるインタラクション理解を可能にする,動的スコーリングのための新しいトレーニングフリーなHOI検出フレームワークを提案する。
このレジストリには、小さな視覚的手がかりが組み込まれており、革新的な相互作用シグネチャを使用して動詞の意味的アライメントを改善し、稀な相互作用への効果的な一般化を促進する。
さらに,視覚的特徴とテキスト的特徴の寄与を適応的に重み付けする,ユニークなマルチヘッドアテンション機構を提案する。
実験の結果,DYSCOはトレーニングフリーの最先端モデルを超え,特に稀な相互作用に優れるトレーニングベースアプローチと競合することが示された。
コードはhttps://github.com/francescotonini/dysco.comで入手できる。
関連論文リスト
- Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration [42.24582981160835]
オープンヒューマンオブジェクトインタラクション(HOI)は、人間とオブジェクト間のインタラクションを検出することを目的としている。
現在の手法はビジョンと言語モデル(VLM)に頼っていることが多いが、最適な画像エンコーダによる課題に直面している。
Interaction-aware Prompting with Concept (INP-CC) を提案する。
論文 参考訳(メタデータ) (2025-08-05T08:33:58Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
本稿では,視覚言語モデルの豊富な知識を効果的に活用し,対人インタラクションを実現する手法を提案する。
同時に複数の人物による異なる行動を認識するという課題に対処するために,興味あるトークンスポッティング機構を設計する。
提案手法は,従来の手法に比べて優れた結果を得ることができ,さらにマルチアクションビデオに拡張することができる。
論文 参考訳(メタデータ) (2024-08-28T17:59:05Z) - Towards Zero-shot Human-Object Interaction Detection via Vision-Language
Integration [14.678931157058363]
本稿では,ゼロショットHOI検出を改善するために,視覚言語モデルの知識を効果的に統合する新しいフレームワーク「KI2HOI」を提案する。
より包括的な視覚表現を生成するための効果的な付加的自己認識機構を開発する。
我々のモデルは、様々なゼロショットおよびフル教師付き設定において、以前の手法よりも優れています。
論文 参考訳(メタデータ) (2024-03-12T02:07:23Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。