論文の概要: Generalized Low-Rank Matrix Contextual Bandits with Graph Information
- arxiv url: http://arxiv.org/abs/2507.17528v1
- Date: Wed, 23 Jul 2025 14:07:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:15.034485
- Title: Generalized Low-Rank Matrix Contextual Bandits with Graph Information
- Title(参考訳): グラフ情報を用いた一般化低ランク行列コンテキスト帯域
- Authors: Yao Wang, Jiannan Li, Yue Kang, Shanxing Gao, Zhenxin Xiao,
- Abstract要約: 行列文脈帯域(CB)は、シーケンシャルな意思決定シナリオに広く適用されている強力なフレームワークである。
オンライン広告やレコメンダシステムのような現実世界のシナリオでは、低ランク構造を超えるグラフ情報が存在することが多い。
本稿では,古典的上位信頼境界(UCB)に基づく新しい行列CBアルゴリズムフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.955203089942582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The matrix contextual bandit (CB), as an extension of the well-known multi-armed bandit, is a powerful framework that has been widely applied in sequential decision-making scenarios involving low-rank structure. In many real-world scenarios, such as online advertising and recommender systems, additional graph information often exists beyond the low-rank structure, that is, the similar relationships among users/items can be naturally captured through the connectivity among nodes in the corresponding graphs. However, existing matrix CB methods fail to explore such graph information, and thereby making them difficult to generate effective decision-making policies. To fill in this void, we propose in this paper a novel matrix CB algorithmic framework that builds upon the classical upper confidence bound (UCB) framework. This new framework can effectively integrate both the low-rank structure and graph information in a unified manner. Specifically, it involves first solving a joint nuclear norm and matrix Laplacian regularization problem, followed by the implementation of a graph-based generalized linear version of the UCB algorithm. Rigorous theoretical analysis demonstrates that our procedure outperforms several popular alternatives in terms of cumulative regret bound, owing to the effective utilization of graph information. A series of synthetic and real-world data experiments are conducted to further illustrate the merits of our procedure.
- Abstract(参考訳): 行列文脈バンディット(CB)は、よく知られた多武装バンディットの拡張であり、低ランク構造を含むシーケンシャルな意思決定シナリオに広く応用された強力なフレームワークである。
オンライン広告やレコメンダシステムなどの現実のシナリオでは、低ランク構造を超えてグラフ情報が追加されることがしばしばあり、つまり、ユーザとイテム間の同様の関係は、対応するグラフ内のノード間の接続を通じて自然に捉えることができる。
しかし,既存の行列CB法ではそのようなグラフ情報の探索に失敗し,効率的な意思決定ポリシーの作成が困難になる。
この空白を埋めるために,古典的上位信頼境界(UCB)に基づく新しい行列CBアルゴリズムフレームワークを提案する。
この新たなフレームワークは、低ランク構造とグラフ情報を統一的に効果的に統合することができる。
具体的には、まず合同核ノルムとマトリックスラプラシア正規化問題を解き、続いてグラフベースの一般化線形版 UCB アルゴリズムを実装した。
厳密な理論的分析は、グラフ情報の有効利用により、累積的後悔境界(cumulative regret bound)の観点から、我々の手順がいくつかの一般的な選択肢より優れていることを示す。
提案手法のメリットをさらに説明するために, 一連の合成および実世界のデータ実験を行った。
関連論文リスト
- Contrastive Matrix Completion with Denoising and Augmented Graph Views for Robust Recommendation [1.0128808054306186]
マトリックス補完は推薦システムにおいて広く採用されているフレームワークである。
コントラスト学習(MCCL)を用いた行列補完法を提案する。
提案手法は,予測スコアの数値精度を向上するだけでなく,ランキング指標の最大36%を向上する上で,優れたランキングを生成する。
論文 参考訳(メタデータ) (2025-06-12T12:47:35Z) - Online Clustering of Dueling Bandits [59.09590979404303]
本稿では、優先フィードバックに基づく協調的な意思決定を可能にするために、最初の「デュエルバンディットアルゴリズムのクラスタリング」を導入する。
本稿では,(1)ユーザ報酬関数をコンテキストベクトルの線形関数としてモデル化する線形デューリング帯域のクラスタリング(COLDB)と,(2)ニューラルネットワークを用いて複雑な非線形ユーザ報酬関数をモデル化するニューラルデューリング帯域のクラスタリング(CONDB)の2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-04T07:55:41Z) - A Unified Regularization Approach to High-Dimensional Generalized Tensor Bandits [16.06016915165857]
意思決定シナリオは、高次元かつ文脈情報に富んだデータを含むことが多い。
これらの課題に対処するために,一般化線形テンソルバンド幅アルゴリズムを提案する。
私たちのフレームワークは、より良いバウンダリを提供するだけでなく、より広範な適用性も提供しています。
論文 参考訳(メタデータ) (2025-01-18T10:46:12Z) - Demystifying Online Clustering of Bandits: Enhanced Exploration Under Stochastic and Smoothed Adversarial Contexts [27.62165569135504]
バンディットのオンラインクラスタリングとして知られる一連の研究は、類似のユーザをクラスタにグループ化することで、コンテキストMABを拡張している。
既存のアルゴリズムは、上位信頼境界(UCB)戦略に依存しており、未知のユーザクラスタを正確に識別するために十分な統計情報を集めるのに苦労している。
クラスタ識別を高速化する探索機構を改良した,UniCLUB と PhaseUniCLUB の2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-01T16:38:29Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Clustering Method with Graph Maximum Decoding Information [6.11503045313947]
本稿では,CMDIと呼ばれるグラフベースモデルにおけるデコード情報の最大化のための新しいクラスタリング手法を提案する。
CMDIは2次元構造情報理論を、グラフ構造抽出とグラフ分割という2つのフェーズからなるクラスタリングプロセスに組み込んでいる。
3つの実世界のデータセットに対する実証的な評価は、CMDIが古典的ベースライン法より優れており、より優れた復号化情報比(DI-R)を示すことを示している。
これらの結果から,デコード情報の品質と計算効率を向上させるCMDIの有効性が示され,グラフベースのクラスタリング解析において有用なツールとして位置づけられた。
論文 参考訳(メタデータ) (2024-03-18T05:18:19Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Matrix Completion with Hierarchical Graph Side Information [39.00971122472004]
ソーシャルグラフやアイテム類似性グラフを副次情報として活用する行列補完問題を考える。
我々は階層的なグラフクラスタリングから始まる普遍的でパラメータフリーで計算効率のよいアルゴリズムを開発した。
我々は、我々の理論的結果を裏付けるために、合成および実世界のデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-01-02T03:47:41Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。