TyDi QA-WANA: A Benchmark for Information-Seeking Question Answering in Languages of West Asia and North Africa
- URL: http://arxiv.org/abs/2507.17709v1
- Date: Wed, 23 Jul 2025 17:20:28 GMT
- Title: TyDi QA-WANA: A Benchmark for Information-Seeking Question Answering in Languages of West Asia and North Africa
- Authors: Parker Riley, Siamak Shakeri, Waleed Ammar, Jonathan H. Clark,
- Abstract summary: We present TyDi QA-WANA, a question-answering dataset consisting of 28K examples divided among 10 language varieties of western Asia and northern Africa.<n>The data collection process was designed to elicit information-seeking questions, where the asker is genuinely curious to know the answer.
- Score: 13.107551474252379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present TyDi QA-WANA, a question-answering dataset consisting of 28K examples divided among 10 language varieties of western Asia and northern Africa. The data collection process was designed to elicit information-seeking questions, where the asker is genuinely curious to know the answer. Each question in paired with an entire article that may or may not contain the answer; the relatively large size of the articles results in a task suitable for evaluating models' abilities to utilize large text contexts in answering questions. Furthermore, the data was collected directly in each language variety, without the use of translation, in order to avoid issues of cultural relevance. We present performance of two baseline models, and release our code and data to facilitate further improvement by the research community.
Related papers
- CaLMQA: Exploring culturally specific long-form question answering across 23 languages [58.18984409715615]
CaLMQA is a dataset of 51.7K culturally specific questions across 23 different languages.<n>We evaluate factuality, relevance and surface-level quality of LLM-generated long-form answers.
arXiv Detail & Related papers (2024-06-25T17:45:26Z) - CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark [68.21939124278065]
Culturally-diverse multilingual Visual Question Answering benchmark designed to cover a rich set of languages and cultures.
CVQA includes culturally-driven images and questions from across 30 countries on four continents, covering 31 languages with 13 scripts, providing a total of 10k questions.
We benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models.
arXiv Detail & Related papers (2024-06-10T01:59:00Z) - From Multiple-Choice to Extractive QA: A Case Study for English and Arabic [51.13706104333848]
We explore the feasibility of repurposing an existing multilingual dataset for a new NLP task.<n>We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic.<n>We aim to help others adapt our approach for the remaining 120 BELEBELE language variants, many of which are deemed under-resourced.
arXiv Detail & Related papers (2024-04-26T11:46:05Z) - MahaSQuAD: Bridging Linguistic Divides in Marathi Question-Answering [0.4194295877935868]
This research endeavors to bridge the gap of the absence of efficient QnA datasets in low-resource languages.
We introduce MahaSQuAD, the first-ever full SQuAD dataset for the Indic language Marathi, consisting of 118,516 training, 11,873 validation, and 11,803 test samples.
arXiv Detail & Related papers (2024-04-20T12:16:35Z) - A Dataset of Open-Domain Question Answering with Multiple-Span Answers [11.291635421662338]
Multi-span answer extraction, also known as the task of multi-span question answering (MSQA), is critical for real-world applications.
There is a notable lack of publicly available MSQA benchmark in Chinese.
We present CLEAN, a comprehensive Chinese multi-span question answering dataset.
arXiv Detail & Related papers (2024-02-15T13:03:57Z) - Cross-Lingual Question Answering over Knowledge Base as Reading
Comprehension [61.079852289005025]
Cross-lingual question answering over knowledge base (xKBQA) aims to answer questions in languages different from that of the provided knowledge base.
One of the major challenges facing xKBQA is the high cost of data annotation.
We propose a novel approach for xKBQA in a reading comprehension paradigm.
arXiv Detail & Related papers (2023-02-26T05:52:52Z) - KenSwQuAD -- A Question Answering Dataset for Swahili Low Resource
Language [0.0]
This dataset is annotated from raw story texts of Swahili low resource language.
QA datasets are important for machine comprehension of natural language for tasks such as internet search and dialog systems.
The research engaged annotators to formulate QA pairs from Swahili texts collected by the Kencorpus project.
arXiv Detail & Related papers (2022-05-04T23:53:23Z) - A Chinese Multi-type Complex Questions Answering Dataset over Wikidata [45.31495982252219]
Complex Knowledge Base Question Answering is a popular area of research in the past decade.
Recent public datasets have led to encouraging results in this field, but are mostly limited to English.
Few state-of-the-art KBQA models are trained on Wikidata, one of the most popular real-world knowledge bases.
We propose CLC-QuAD, the first large scale complex Chinese semantic parsing dataset over Wikidata to address these challenges.
arXiv Detail & Related papers (2021-11-11T07:39:16Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
We present a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text.
We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers.
arXiv Detail & Related papers (2021-05-07T00:12:34Z) - XOR QA: Cross-lingual Open-Retrieval Question Answering [75.20578121267411]
This work extends open-retrieval question answering to a cross-lingual setting.
We construct a large-scale dataset built on questions lacking same-language answers.
arXiv Detail & Related papers (2020-10-22T16:47:17Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - TyDi QA: A Benchmark for Information-Seeking Question Answering in
Typologically Diverse Languages [27.588857710802113]
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
We present a quantitative analysis of the data quality and example-level qualitative linguistic analyses of observed language phenomena.
arXiv Detail & Related papers (2020-03-10T21:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.