Sequential Bayesian Design for Efficient Surrogate Construction in the Inversion of Darcy Flows
- URL: http://arxiv.org/abs/2507.17713v1
- Date: Wed, 23 Jul 2025 17:25:14 GMT
- Title: Sequential Bayesian Design for Efficient Surrogate Construction in the Inversion of Darcy Flows
- Authors: Hongji Wang, Hongqiao Wang, Jinyong Ying, Qingping Zhou,
- Abstract summary: Inverse problems governed by partial differential equations (PDEs) play a crucial role in various fields, including computational science, image processing, and engineering.<n>We introduce a sequential Bayesian design strategy to acquire the proposed surrogate since the high-probability region of the likelihood is unknown.<n>Three experiments based the Darcy flow equation demonstrate the advantages of the proposed method in terms of both inversion accuracy and computational speed.
- Score: 2.8222764383589456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems governed by partial differential equations (PDEs) play a crucial role in various fields, including computational science, image processing, and engineering. Particularly, Darcy flow equation is a fundamental equation in fluid mechanics, which plays a crucial role in understanding fluid flow through porous media. Bayesian methods provide an effective approach for solving PDEs inverse problems, while their numerical implementation requires numerous evaluations of computationally expensive forward solvers. Therefore, the adoption of surrogate models with lower computational costs is essential. However, constructing a globally accurate surrogate model for high-dimensional complex problems demands high model capacity and large amounts of data. To address this challenge, this study proposes an efficient locally accurate surrogate that focuses on the high-probability regions of the true likelihood in inverse problems, with relatively low model complexity and few training data requirements. Additionally, we introduce a sequential Bayesian design strategy to acquire the proposed surrogate since the high-probability region of the likelihood is unknown. The strategy treats the posterior evolution process of sequential Bayesian design as a Gaussian process, enabling algorithmic acceleration through one-step ahead prior. The complete algorithmic framework is referred to as Sequential Bayesian design for locally accurate surrogate (SBD-LAS). Finally, three experiments based the Darcy flow equation demonstrate the advantages of the proposed method in terms of both inversion accuracy and computational speed.
Related papers
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
A novel diffusion-based framework is introduced for solving inverse problems using a piecewise guidance scheme.<n>The proposed method is problem-agnostic and readily adaptable to a variety of inverse problems.<n>The framework achieves a reduction in inference time of (25%) for inpainting with both random and center masks, and (23%) and (24%) for (4times) and (8times) super-resolution tasks.
arXiv Detail & Related papers (2025-07-22T19:35:14Z) - Inverse Problems with Diffusion Models: A MAP Estimation Perspective [5.002087490888723]
In Computer, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems.
We propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model.
We use our proposed framework to develop effective algorithms for image restoration.
arXiv Detail & Related papers (2024-07-27T15:41:13Z) - Adaptive operator learning for infinite-dimensional Bayesian inverse problems [7.716833952167609]
We develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas.
We present a rigorous convergence guarantee in the linear case using the UKI framework.
The numerical results show that our method can significantly reduce computational costs while maintaining inversion accuracy.
arXiv Detail & Related papers (2023-10-27T01:50:33Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Semi-supervised Invertible DeepONets for Bayesian Inverse Problems [8.594140167290098]
DeepONets offer a powerful, data-driven tool for solving parametric PDEs by learning operators.
In this work, we employ physics-informed DeepONets in the context of high-dimensional, Bayesian inverse problems.
arXiv Detail & Related papers (2022-09-06T18:55:06Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.