論文の概要: UrbanPulse: A Cross-City Deep Learning Framework for Ultra-Fine-Grained Population Transfer Prediction
- arxiv url: http://arxiv.org/abs/2507.17924v1
- Date: Wed, 23 Jul 2025 20:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.536537
- Title: UrbanPulse: A Cross-City Deep Learning Framework for Ultra-Fine-Grained Population Transfer Prediction
- Title(参考訳): UrbanPulse:超高次人口移動予測のための都市間深層学習フレームワーク
- Authors: Hongrong Yang, Markus Schlaepfer,
- Abstract要約: UrbanPulseは、超微細で都市全体のODフロー予測を提供するスケーラブルなディープラーニングフレームワークである。
大規模な都市グラフの事前学習、コールドスタート適応、強化学習微調整という3段階の学習戦略を採用している。
最先端の精度とスケーラビリティを実現します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate population flow prediction is essential for urban planning, transportation management, and public health. Yet existing methods face key limitations: traditional models rely on static spatial assumptions, deep learning models struggle with cross-city generalization, and Large Language Models (LLMs) incur high computational costs while failing to capture spatial structure. Moreover, many approaches sacrifice resolution by clustering Points of Interest (POIs) or restricting coverage to subregions, limiting their utility for city-wide analytics. We introduce UrbanPulse, a scalable deep learning framework that delivers ultra-fine-grained, city-wide OD flow predictions by treating each POI as an individual node. It combines a temporal graph convolutional encoder with a transformer-based decoder to model multi-scale spatiotemporal dependencies. To ensure robust generalization across urban contexts, UrbanPulse employs a three-stage transfer learning strategy: pretraining on large-scale urban graphs, cold-start adaptation, and reinforcement learning fine-tuning.Evaluated on over 103 million cleaned GPS records from three metropolitan areas in California, UrbanPulse achieves state-of-the-art accuracy and scalability. Through efficient transfer learning, UrbanPulse takes a key step toward making high-resolution, AI-powered urban forecasting deployable in practice across diverse cities.
- Abstract(参考訳): 正確な人口フロー予測は都市計画、交通管理、公衆衛生に不可欠である。
従来のモデルは静的空間仮定に依存し、ディープラーニングモデルは都市間一般化に苦慮し、大規模言語モデル(LLM)は空間構造を捉えるのに失敗しながら高い計算コストを発生させる。
さらに、多くのアプローチでは、POI(Points of Interest)をクラスタリングしたり、サブリージョンに範囲を制限したりすることで解決を犠牲にしている。
UrbanPulseはスケーラブルなディープラーニングフレームワークで、各POIを個々のノードとして扱うことにより、細粒度で都市全体のODフローを予測する。
時間グラフ畳み込みエンコーダと変換器ベースのデコーダを組み合わせて、マルチスケールの時空間依存性をモデル化する。
都市環境におけるロバストな一般化を確保するため,UrbanPulseでは,大規模都市グラフの事前学習,コールドスタート適応,強化学習微調整という3段階の移行学習戦略を採用している。
効率的なトランスファー学習を通じて、UrbanPulseは、さまざまな都市にまたがる、高解像度でAIによる都市予測を実現するための重要な一歩を踏み出した。
関連論文リスト
- UrbanMind: Urban Dynamics Prediction with Multifaceted Spatial-Temporal Large Language Models [18.051209616917042]
UrbanMind は多面的都市動態予測のための空間時空間 LLM フレームワークである。
UrbanMindのコアとなるMuffin-MAEは、特殊なマスキング戦略を備えた多面式フュージョンマスク自動エンコーダである。
複数の都市にまたがる実世界の都市データセットの実験は、UrbanMindが一貫して最先端のベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2025-05-16T19:38:06Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model [12.789465279993864]
地理空間予測は災害管理、都市計画、公衆衛生など様々な分野において重要である。
提案するStreetViewLLMは,大規模言語モデルと連鎖推論とマルチモーダルデータソースを統合した新しいフレームワークである。
このモデルは、香港、東京、シンガポール、ロサンゼルス、ニューヨーク、ロンドン、パリを含む7つの世界都市に適用されている。
論文 参考訳(メタデータ) (2024-11-19T05:15:19Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach [40.357070798871675]
電子商取引と都市化の進展は、都市部における配送業務を著しく強化した。
データ駆動予測手法、特に機械学習技術を利用した手法は、これらの複雑さを扱うために登場した。
本稿では,この問題を伝達可能なグラフ時間に基づく学習タスクとして定式化する。
中国とアメリカの8都市を含む2つの実世界の配送データセットに関する総合的な実証的評価結果から、我々のモデルは、精度、効率、転送性において最先端のベースラインを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-08-30T12:56:17Z) - MetroGNN: Metro Network Expansion with Reinforcement Learning [29.418145526587313]
都市の異種マルチグラフにおけるマルコフ決定プロセスに対処するための強化学習フレームワークを提案する。
このアプローチでは,グラフニューラルネットワークが取得した情報に基づいて,インテリジェントにノードを選択する,注意型ポリシネットワークを採用している。
論文 参考訳(メタデータ) (2024-03-14T09:09:15Z) - Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation [25.916891462152044]
本稿では,都市知識伝達を伴う複雑な数ショット学習のための新しい生成事前学習フレームワークであるGPDを提案する。
我々は、プロンプトで導かれる調整されたニューラルネットワークを生成する生成拡散モデルを再放送する。
GPDは、トラフィック速度予測やクラウドフロー予測といったタスクのデータセットにおける最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-02-19T08:11:26Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
我々は,都市間セマンティックセマンティックセグメンテーションタスクの研究を目的とした,新しいマルチモーダルリモートセンシングベンチマークデータセット(ハイパースペクトル,マルチスペクトル,SARを含む)を構築した。
単一都市に留まらず,多都市環境からAIモデルの一般化能力を促進するため,高解像度なドメイン適応ネットワークであるHighDANを提案する。
高DANは, 並列高分解能融合方式で, 都市景観の空間的トポロジカルな構造を良好に維持することができる。
論文 参考訳(メタデータ) (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - City limits in the age of smartphones and urban scaling [0.0]
都市計画は、都市システム全体にわたる都市境界を定義するための適切な基準をまだ欠いている。
ICTは、都市システムのより正確な記述を記述する可能性を提供する。
都市境界を定義するため,大量の携帯電話記録に計算手法を適用した。
論文 参考訳(メタデータ) (2020-05-06T17:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。