OPEN: A Benchmark Dataset and Baseline for Older Adult Patient Engagement Recognition in Virtual Rehabilitation Learning Environments
- URL: http://arxiv.org/abs/2507.17959v1
- Date: Wed, 23 Jul 2025 22:03:29 GMT
- Title: OPEN: A Benchmark Dataset and Baseline for Older Adult Patient Engagement Recognition in Virtual Rehabilitation Learning Environments
- Authors: Ali Abedi, Sadaf Safa, Tracey J. F. Colella, Shehroz S. Khan,
- Abstract summary: This paper introduces OPEN (Older adult Patient ENgagement), a novel dataset supporting AI-driven engagement recognition.<n>It was collected from eleven older adults participating in weekly virtual group learning sessions over six weeks as part of cardiac rehabilitation.<n>To demonstrate utility, multiple machine learning and deep learning models were trained, achieving engagement recognition accuracy of up to 81 percent.
- Score: 1.9827390755712084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engagement in virtual learning is essential for participant satisfaction, performance, and adherence, particularly in online education and virtual rehabilitation, where interactive communication plays a key role. Yet, accurately measuring engagement in virtual group settings remains a challenge. There is increasing interest in using artificial intelligence (AI) for large-scale, real-world, automated engagement recognition. While engagement has been widely studied in younger academic populations, research and datasets focused on older adults in virtual and telehealth learning settings remain limited. Existing methods often neglect contextual relevance and the longitudinal nature of engagement across sessions. This paper introduces OPEN (Older adult Patient ENgagement), a novel dataset supporting AI-driven engagement recognition. It was collected from eleven older adults participating in weekly virtual group learning sessions over six weeks as part of cardiac rehabilitation, producing over 35 hours of data, making it the largest dataset of its kind. To protect privacy, raw video is withheld; instead, the released data include facial, hand, and body joint landmarks, along with affective and behavioral features extracted from video. Annotations include binary engagement states, affective and behavioral labels, and context-type indicators, such as whether the instructor addressed the group or an individual. The dataset offers versions with 5-, 10-, 30-second, and variable-length samples. To demonstrate utility, multiple machine learning and deep learning models were trained, achieving engagement recognition accuracy of up to 81 percent. OPEN provides a scalable foundation for personalized engagement modeling in aging populations and contributes to broader engagement recognition research.
Related papers
- Supervised Contrastive Learning for Ordinal Engagement Measurement [2.166000001057538]
Student engagement plays a crucial role in the successful delivery of educational programs.<n>This paper identifies two key challenges in this problem: class imbalance and incorporating order into engagement levels.<n>A novel approach to video-based student engagement measurement in virtual learning environments is proposed.
arXiv Detail & Related papers (2025-05-27T03:49:45Z) - Deep Learning-Based Facial Expression Recognition for the Elderly: A Systematic Review [0.5242869847419834]
The rapid aging of the global population has highlighted the need for technologies to support elderly.<n>Facial expression recognition (FER) systems offer a non-invasive means of monitoring emotional states.<n>This study presents a systematic review of deep learning-based FER systems, focusing on their applications for the elderly population.
arXiv Detail & Related papers (2025-02-04T11:05:24Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - Engagement Measurement Based on Facial Landmarks and Spatial-Temporal Graph Convolutional Networks [2.4343669357792708]
This paper introduces a novel, privacy-preserving method for engagement measurement from videos.
It uses facial landmarks, which carry no personally identifiable information, extracted from videos via the MediaPipe deep learning solution.
The proposed method is capable of being deployed on virtual learning platforms and measuring engagement in real-time.
arXiv Detail & Related papers (2024-03-25T20:43:23Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
We present a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model.
We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks.
Our approach outperforms previous baselines by up to 5%.
arXiv Detail & Related papers (2023-11-10T18:38:14Z) - Towards Continual Egocentric Activity Recognition: A Multi-modal
Egocentric Activity Dataset for Continual Learning [21.68009790164824]
We present a multi-modal egocentric activity dataset for continual learning named UESTC-MMEA-CL.
It contains synchronized data of videos, accelerometers, and gyroscopes, for 32 types of daily activities, performed by 10 participants.
Results of egocentric activity recognition are reported when using separately, and jointly, three modalities: RGB, acceleration, and gyroscope.
arXiv Detail & Related papers (2023-01-26T04:32:00Z) - Joint Engagement Classification using Video Augmentation Techniques for
Multi-person Human-robot Interaction [22.73774398716566]
We present a novel framework for identifying a parent-child dyad's joint engagement.
Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models.
Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context.
arXiv Detail & Related papers (2022-12-28T23:52:55Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Understanding the Representation and Representativeness of Age in AI
Data Sets [43.20868863618351]
We ask whether older adults are represented proportionally to the population at large in AI data sets.
We find that older adults are very under-represented; five data sets explicitly documented the closed age intervals of their subjects.
We find that only 24 of the data sets include any age-related information in their documentation or metadata.
arXiv Detail & Related papers (2021-03-10T12:26:22Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras.
By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings.
arXiv Detail & Related papers (2020-01-13T12:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.