Comparison of Segmentation Methods in Remote Sensing for Land Use Land Cover
- URL: http://arxiv.org/abs/2507.18099v1
- Date: Thu, 24 Jul 2025 05:23:02 GMT
- Title: Comparison of Segmentation Methods in Remote Sensing for Land Use Land Cover
- Authors: Naman Srivastava, Joel D Joy, Yash Dixit, Swarup E, Rakshit Ramesh,
- Abstract summary: Land Use Land Cover (LULC) mapping is essential for urban and resource planning.<n>This study evaluates advanced LULC mapping techniques, focusing on Look-Up Table (LUT)-based Atmospheric Correction applied to Cartosat Multispectral (MX) sensor images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Land Use Land Cover (LULC) mapping is essential for urban and resource planning, and is one of the key elements in developing smart and sustainable cities.This study evaluates advanced LULC mapping techniques, focusing on Look-Up Table (LUT)-based Atmospheric Correction applied to Cartosat Multispectral (MX) sensor images, followed by supervised and semi-supervised learning models for LULC prediction. We explore DeeplabV3+ and Cross-Pseudo Supervision (CPS). The CPS model is further refined with dynamic weighting, enhancing pseudo-label reliability during training. This comprehensive approach analyses the accuracy and utility of LULC mapping techniques for various urban planning applications. A case study of Hyderabad, India, illustrates significant land use changes due to rapid urbanization. By analyzing Cartosat MX images over time, we highlight shifts such as urban sprawl, shrinking green spaces, and expanding industrial areas. This demonstrates the practical utility of these techniques for urban planners and policymakers.
Related papers
- Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior [16.334202302817783]
This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior.<n>We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities.
arXiv Detail & Related papers (2025-04-24T13:41:27Z) - Geospatial Data Fusion: Combining Lidar, SAR, and Optical Imagery with AI for Enhanced Urban Mapping [0.0]
This study explores the integration of Lidar, Synthetic Aperture Radar (SAR), and optical imagery through advanced artificial intelligence techniques for enhanced urban mapping.<n>The research employs Fully Convolutional Networks (FCNs) as the primary deep learning model for urban feature extraction.<n>Key findings indicate that the FCN-PSO model achieved a pixel accuracy of 92.3% and a mean Intersection over Union (IoU) of 87.6%, surpassing traditional single-sensor approaches.
arXiv Detail & Related papers (2024-12-25T22:17:31Z) - Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets [17.621744717937993]
This study focuses on the challenges and advancements in SAR-based urban flood mapping.
It specifically addresses the limitations of spatial and temporal resolution in SAR data and discusses the essential pre-processing steps.
It highlights a lack of open-access SAR datasets for urban flood mapping, hindering development in advanced deep learning-based methods.
arXiv Detail & Related papers (2024-11-06T09:30:13Z) - Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images [0.0]
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning.
This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images.
We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data.
arXiv Detail & Related papers (2024-08-05T11:14:23Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - A Novel CNN-LSTM-based Approach to Predict Urban Expansion [1.2233362977312943]
Time-series remote sensing data offer a rich source of information that can be used in a wide range of applications.
This paper addresses the challenge of using time-series satellite images to predict urban expansion.
We propose a novel two-step approach based on semantic image segmentation in order to predict urban expansion.
arXiv Detail & Related papers (2021-03-02T12:58:05Z) - OpenStreetMap: Challenges and Opportunities in Machine Learning and
Remote Sensing [66.23463054467653]
We present a review of recent methods based on machine learning to improve and use OpenStreetMap data.
We believe that OSM can change the way we interpret remote sensing data and that the synergy with machine learning can scale participatory map making.
arXiv Detail & Related papers (2020-07-13T09:58:14Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.