Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets
- URL: http://arxiv.org/abs/2411.04153v1
- Date: Wed, 06 Nov 2024 09:30:13 GMT
- Title: Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets
- Authors: Jie Zhao, Ming Li, Yu Li, Patrick Matgen, Marco Chini,
- Abstract summary: This study focuses on the challenges and advancements in SAR-based urban flood mapping.
It specifically addresses the limitations of spatial and temporal resolution in SAR data and discusses the essential pre-processing steps.
It highlights a lack of open-access SAR datasets for urban flood mapping, hindering development in advanced deep learning-based methods.
- Score: 17.621744717937993
- License:
- Abstract: Understanding the extent of urban flooding is crucial for assessing building damage, casualties and economic losses. Synthetic Aperture Radar (SAR) technology offers significant advantages for mapping flooded urban areas due to its ability to collect data regardless weather and solar illumination conditions. However, the wide range of existing methods makes it difficult to choose the best approach for a specific situation and to identify future research directions. Therefore, this study provides a comprehensive review of current research on urban flood mapping using SAR data, summarizing key characteristics of floodwater in SAR images and outlining various approaches from scientific articles. Additionally, we provide a brief overview of the advantages and disadvantages of each method category, along with guidance on selecting the most suitable approach for different scenarios. This study focuses on the challenges and advancements in SAR-based urban flood mapping. It specifically addresses the limitations of spatial and temporal resolution in SAR data and discusses the essential pre-processing steps. Moreover, the article explores the potential benefits of Polarimetric SAR (PolSAR) techniques and uncertainty analysis for future research. Furthermore, it highlights a lack of open-access SAR datasets for urban flood mapping, hindering development in advanced deep learning-based methods. Besides, we evaluated the Technology Readiness Levels (TRLs) of urban flood mapping techniques to identify challenges and future research areas. Finally, the study explores the practical applications of SAR-based urban flood mapping in both the private and public sectors and provides a comprehensive overview of the benefits and potential impact of these methods.
Related papers
- StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGS is first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction.
StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability.
To address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information.
arXiv Detail & Related papers (2024-10-06T04:21:59Z) - Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting [7.4807361562214405]
Floods are among the most common and devastating natural hazards.
Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events.
There is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent.
arXiv Detail & Related papers (2024-09-27T09:51:25Z) - UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping [24.857739769719778]
UrbanSARFloods is a dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events.
It contains 8,879 $512times 512$ chips covering 807,500 $km2$ across 20 land cover classes and 5, spanning 18 flood events.
We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas.
arXiv Detail & Related papers (2024-06-06T14:28:43Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification.
Our findings demonstrate that our method surpasses both passive and conventional active learning techniques.
It effectively addresses the'sampling bias' challenge in traditional active learning strategies.
arXiv Detail & Related papers (2024-05-28T01:34:35Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Guided Depth Map Super-resolution: A Survey [88.54731860957804]
Guided depth map super-resolution (GDSR) aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image.
A myriad of novel and effective approaches have been proposed recently, especially with powerful deep learning techniques.
This survey is an effort to present a comprehensive survey of recent progress in GDSR.
arXiv Detail & Related papers (2023-02-19T15:43:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Urban land-use analysis using proximate sensing imagery: a survey [3.79474411753363]
Studies leveraging proximate sensing imagery have demonstrated great potential to address the need for local data in urban land-use analysis.
This paper reviews and summarizes the state-of-the-art methods and publicly available datasets from proximate sensing to support land-use analysis.
arXiv Detail & Related papers (2021-01-13T01:30:21Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
We synthesize the growing literature that uses satellite imagery to understand sustainable development outcomes.
We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution of satellite imagery.
We review recent machine learning approaches to model-building in the context of scarce and noisy training data.
arXiv Detail & Related papers (2020-09-23T05:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.