Datasets and Recipes for Video Temporal Grounding via Reinforcement Learning
- URL: http://arxiv.org/abs/2507.18100v1
- Date: Thu, 24 Jul 2025 05:24:01 GMT
- Title: Datasets and Recipes for Video Temporal Grounding via Reinforcement Learning
- Authors: Ruizhe Chen, Zhiting Fan, Tianze Luo, Heqing Zou, Zhaopeng Feng, Guiyang Xie, Hansheng Zhang, Zhuochen Wang, Zuozhu Liu, Huaijian Zhang,
- Abstract summary: Video Temporal Grounding aims to localize relevant temporal segments in videos given natural language queries.<n>Existing approaches often suffer from limited temporal awareness and poor generalization.<n>We introduce a two-stage training framework that integrates supervised fine-tuning with reinforcement learning.
- Score: 9.8322406322074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Temporal Grounding (VTG) aims to localize relevant temporal segments in videos given natural language queries. Despite recent progress with large vision-language models (LVLMs) and instruction-tuning, existing approaches often suffer from limited temporal awareness and poor generalization. In this work, we introduce a two-stage training framework that integrates supervised fine-tuning with reinforcement learning (RL) to improve both the accuracy and robustness of VTG models. Our approach first leverages high-quality curated cold start data for SFT initialization, followed by difficulty-controlled RL to further enhance temporal localization and reasoning abilities. Comprehensive experiments on multiple VTG benchmarks demonstrate that our method consistently outperforms existing models, particularly in challenging and open-domain scenarios. We conduct an in-depth analysis of training strategies and dataset curation, highlighting the importance of both high-quality cold start data and difficulty-controlled RL. To facilitate further research and industrial adoption, we release all intermediate datasets, models, and code to the community.
Related papers
- Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting [70.83781268763215]
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training.<n>VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion.<n>This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems.
arXiv Detail & Related papers (2025-08-06T09:03:10Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
arXiv Detail & Related papers (2025-05-21T12:29:40Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment [48.94844127553743]
TEMPLE is a systematic framework that enhances temporal reasoning capabilities of Video Large Language Models.<n>Our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data.<n>Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
arXiv Detail & Related papers (2025-03-21T08:00:29Z) - Time-R1: Post-Training Large Vision Language Model for Temporal Video Grounding [57.26400319795876]
Temporal Video Grounding (TVG) is a core challenge in long-form video understanding.<n>Recent Large Vision-Language Models (LVLMs) have shown early promise in tackling TVG through supervised fine-tuning.<n>We propose a novel post-training framework that enhances the generalization capabilities of LVLMs via reinforcement learning.
arXiv Detail & Related papers (2025-03-17T17:04:20Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
Popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training.
Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models.
We aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data.
arXiv Detail & Related papers (2022-06-06T04:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.