ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning
- URL: http://arxiv.org/abs/2505.15447v1
- Date: Wed, 21 May 2025 12:29:40 GMT
- Title: ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning
- Authors: Ziqiang Xu, Qi Dai, Tian Xie, Yifan Yang, Kai Qiu, DongDong Chen, Zuxuan Wu, Chong Luo,
- Abstract summary: We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
- Score: 68.76048244253582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video understanding is inherently intention-driven-humans naturally focus on relevant frames based on their goals. Recent advancements in multimodal large language models (MLLMs) have enabled flexible query-driven reasoning; however, video-based frameworks like Video Chain-of-Thought lack direct training signals to effectively identify relevant frames. Current approaches often rely on heuristic methods or pseudo-label supervised annotations, which are both costly and limited in scalability across diverse scenarios. To overcome these challenges, we introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in intention-driven video understanding. An iterated amplification strategy is adopted to perform alternating cyclic training in the video CoT system, where each component undergoes iterative cycles of refinement to improve its capabilities. ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error, eliminating the need for expensive annotations while closely aligning with human-like learning processes. Comprehensive experiments across multiple benchmarks, including VideoMME, LVBench, and MLVU, demonstrate that ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks, highlighting its effectiveness and scalability. Notably, ViaRL achieves a nearly 15\% improvement on Needle QA, a subset of MLVU, which is required to search a specific needle within a long video and regarded as one of the most suitable benchmarks for evaluating temporal grounding.
Related papers
- TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding [26.463523465270097]
Multi-language Large Language Models (MLLMs) have demonstrated significant progress in vision-based tasks, yet they still face challenges when processing long-duration video inputs.<n>We propose Temporal Policy Sampling Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning.<n>Our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs.
arXiv Detail & Related papers (2025-08-06T12:03:36Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment [48.94844127553743]
TEMPLE is a systematic framework that enhances temporal reasoning capabilities of Video Large Language Models.<n>Our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data.<n>Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
arXiv Detail & Related papers (2025-03-21T08:00:29Z) - Time-R1: Post-Training Large Vision Language Model for Temporal Video Grounding [57.26400319795876]
Temporal Video Grounding (TVG) is a core challenge in long-form video understanding.<n>Recent Large Vision-Language Models (LVLMs) have shown early promise in tackling TVG through supervised fine-tuning.<n>We propose a novel post-training framework that enhances the generalization capabilities of LVLMs via reinforcement learning.
arXiv Detail & Related papers (2025-03-17T17:04:20Z) - VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval [8.908777234657046]
Large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains.<n>Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules.<n> Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2024-12-02T14:45:53Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - Contrastive Losses Are Natural Criteria for Unsupervised Video
Summarization [27.312423653997087]
Video summarization aims to select the most informative subset of frames in a video to facilitate efficient video browsing.
We propose three metrics featuring a desirable key frame: local dissimilarity, global consistency, and uniqueness.
We show that by refining the pre-trained features with a lightweight contrastively learned projection module, the frame-level importance scores can be further improved.
arXiv Detail & Related papers (2022-11-18T07:01:28Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
We propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples.
In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information.
The proposed design allows our recurrent cells to efficiently propagate-temporal-information across frames and reduces the need for high complexity networks.
arXiv Detail & Related papers (2020-12-24T00:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.