Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
- URL: http://arxiv.org/abs/2507.18112v1
- Date: Thu, 24 Jul 2025 05:51:51 GMT
- Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
- Authors: Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun,
- Abstract summary: We address the challenge of parameter-efficient fine-tuning (PEFT) for 3D U-Net-based denoising diffusion probabilistic models (DDPMs)<n>We propose TenVOO, a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones.<n>Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale similarity index measure (MS-SSIM)
- Score: 23.30947697113457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo
Related papers
- Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
Current anomaly detection methods excel with benchmark industrial data but struggle with medical data due to varying definitions of 'normal' and 'abnormal'
We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost.
arXiv Detail & Related papers (2024-08-28T17:20:56Z) - StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations [3.4453266252081645]
We introduce StoDIP, a new algorithm that extends the ground-truth-free Deep Image Prior (DIP) reconstruction to 3D MRF imaging.
tested on a dataset of whole-brain scans from healthy volunteers, StoDIP demonstrated superior performance over the ground-truth-free reconstruction baselines, both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-08-05T10:32:06Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation [34.865695471451886]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)<n>It incorporates two parametrically and computationally efficient designs.<n>It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
We introduce an end-to-end algorithm capable of extracting features from full 4-D data using 3-D CNNs and 3-D Magnetical LSTMs.
Our results show that the proposed model achieves state of the art results on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites, respectively.
arXiv Detail & Related papers (2020-02-14T11:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.