U-Net Based Healthy 3D Brain Tissue Inpainting
- URL: http://arxiv.org/abs/2507.18126v1
- Date: Thu, 24 Jul 2025 06:26:46 GMT
- Title: U-Net Based Healthy 3D Brain Tissue Inpainting
- Authors: Juexin Zhang, Ying Weng, Ke Chen,
- Abstract summary: This paper introduces a novel approach to synthesize healthy 3D brain tissue from masked input images.<n>Our proposed method employs a U-Net-based architecture, which is designed to effectively reconstruct the missing or corrupted regions of brain MRI scans.<n>Our model is trained on the BraTS-Local-Inpainting dataset and demonstrates the exceptional performance in recovering healthy brain tissue.
- Score: 5.347187213114967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to synthesize healthy 3D brain tissue from masked input images, specifically focusing on the task of 'ASNR-MICCAI BraTS Local Synthesis of Tissue via Inpainting'. Our proposed method employs a U-Net-based architecture, which is designed to effectively reconstruct the missing or corrupted regions of brain MRI scans. To enhance our model's generalization capabilities and robustness, we implement a comprehensive data augmentation strategy that involves randomly masking healthy images during training. Our model is trained on the BraTS-Local-Inpainting dataset and demonstrates the exceptional performance in recovering healthy brain tissue. The evaluation metrics employed, including Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE), consistently yields impressive results. On the BraTS-Local-Inpainting validation set, our model achieved an SSIM score of 0.841, a PSNR score of 23.257, and an MSE score of 0.007. Notably, these evaluation metrics exhibit relatively low standard deviations, i.e., 0.103 for SSIM score, 4.213 for PSNR score and 0.007 for MSE score, which indicates that our model's reliability and consistency across various input scenarios. Our method also secured first place in the challenge.
Related papers
- fastWDM3D: Fast and Accurate 3D Healthy Tissue Inpainting [1.9637775017749974]
We present a 3D wavelet diffusion model (WDM3D) that does not include a GAN component.<n>Our model is up to 800 x faster while still achieving superior performance metrics.<n>Our proposed method, fastWDM3D, represents a promising approach for fast and accurate healthy tissue inpainting.
arXiv Detail & Related papers (2025-07-17T14:10:51Z) - Missing Data Estimation for MR Spectroscopic Imaging via Mask-Free Deep Learning Methods [0.0]
We propose the first deep learning-based, mask-free framework for estimating missing data in MRSI metabolic maps.<n>Our model generalizes well to real-world datasets without requiring retraining or mask input.
arXiv Detail & Related papers (2025-05-11T01:56:26Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation [42.06416052431378]
2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy.
We collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning to train BrainGPT models to generate radiology-adherent 3D brain CT reports.
Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.
arXiv Detail & Related papers (2024-07-02T12:58:35Z) - S3IM: Stochastic Structural SIMilarity and Its Unreasonable
Effectiveness for Neural Fields [46.9880016170926]
We show that Structural SIMilarity (S3IM) loss processes multiple data points as a whole set instead of multiplexing multiple inputs independently.
Our experiments demonstrate the unreasonable effectiveness of S3IM in improving NeRF and neural surface representation for nearly free.
arXiv Detail & Related papers (2023-08-14T09:45:28Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
Paranasal anomalies can present with a wide range of morphological features.
Current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time.
We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary (MS) and MS with polyps or cysts.
arXiv Detail & Related papers (2023-03-31T09:23:27Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.