論文の概要: Goal-based Trajectory Prediction for improved Cross-Dataset Generalization
- arxiv url: http://arxiv.org/abs/2507.18196v1
- Date: Thu, 24 Jul 2025 08:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.309243
- Title: Goal-based Trajectory Prediction for improved Cross-Dataset Generalization
- Title(参考訳): ゴールベース軌道予測によるクロスデータセット一般化の改善
- Authors: Daniel Grimm, Ahmed Abouelazm, J. Marius Zöllner,
- Abstract要約: 本稿では,交通参加者とベクトル化された道路網からなる異種グラフを用いた新しいグラフニューラルネットワーク(GNN)を提案する。
本稿では,Argoverse2のトレーニングとNuScenesの評価を行うクロスデータセット評価によるゴール選択の有効性を示す。
- 参考スコア(独自算出の注目度): 12.233116745812898
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To achieve full autonomous driving, a good understanding of the surrounding environment is necessary. Especially predicting the future states of other traffic participants imposes a non-trivial challenge. Current SotA-models already show promising results when trained on real datasets (e.g. Argoverse2, NuScenes). Problems arise when these models are deployed to new/unseen areas. Typically, performance drops significantly, indicating that the models lack generalization. In this work, we introduce a new Graph Neural Network (GNN) that utilizes a heterogeneous graph consisting of traffic participants and vectorized road network. Latter, is used to classify goals, i.e. endpoints of the predicted trajectories, in a multi-staged approach, leading to a better generalization to unseen scenarios. We show the effectiveness of the goal selection process via cross-dataset evaluation, i.e. training on Argoverse2 and evaluating on NuScenes.
- Abstract(参考訳): 完全自律運転を実現するためには、周囲の環境をよく理解する必要がある。
特に、他の交通参加者の将来の状態を予測することは、非自明な挑戦を強いる。
現在のSotAモデルは、実際のデータセット(例:Argoverse2、NuScenes)でトレーニングされた場合、すでに有望な結果を示している。
これらのモデルが新しい/見えない領域にデプロイされるとき、問題は発生します。
通常、性能は大幅に低下し、モデルには一般化が欠如していることを示している。
本研究では,交通参加者とベクトル化道路網からなる異種グラフを用いた新しいグラフニューラルネットワーク(GNN)を提案する。
ラッター (Latter) は、予測された軌道の終端を多段階のアプローチで分類するために用いられ、見当たらないシナリオにより良い一般化をもたらす。
本稿では,Argoverse2のトレーニングとNuScenesの評価を行うクロスデータセット評価によるゴール選択の有効性を示す。
関連論文リスト
- JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
DGCRN(Dynamic Graph Contemporal Recurrent Network)と呼ばれる新しい交通予測フレームワークを提案する。
DGCRNでは、ハイパーネットワークはノード属性から動的特性を活用して抽出するように設計されている。
我々は、各時間ステップで動的グラフの細かい反復をモデル化する生成法を最初に採用した。
論文 参考訳(メタデータ) (2021-04-30T11:25:43Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
本稿では,歩行者の横断行動を予測するための新しいグラフベースモデルを提案する。
既存のnuScenesデータセットに対して、3Dバウンディングボックスと歩行者行動アノテーションを提供する新しいデータセットを紹介します。
提案手法は,既存の手法と比較して,様々な指標を15%以上改善し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-12-03T18:28:27Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。