Information Security Based on LLM Approaches: A Review
- URL: http://arxiv.org/abs/2507.18215v1
- Date: Thu, 24 Jul 2025 09:09:36 GMT
- Title: Information Security Based on LLM Approaches: A Review
- Authors: Chang Gong, Zhongwen Li, Xiaoqi Li,
- Abstract summary: Large language models (LLMs) have shown a broad application prospect in the field of information security.<n>Based on neural networks and Transformer architecture, this paper analyzes the technical basis of large language models.<n>It is shown that the introduction of large language modeling helps to improve the detection accuracy and reduce the false alarm rate of security systems.
- Score: 3.292159069489852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information security is facing increasingly severe challenges, and traditional protection means are difficult to cope with complex and changing threats. In recent years, as an emerging intelligent technology, large language models (LLMs) have shown a broad application prospect in the field of information security. In this paper, we focus on the key role of LLM in information security, systematically review its application progress in malicious behavior prediction, network threat analysis, system vulnerability detection, malicious code identification, and cryptographic algorithm optimization, and explore its potential in enhancing security protection performance. Based on neural networks and Transformer architecture, this paper analyzes the technical basis of large language models and their advantages in natural language processing tasks. It is shown that the introduction of large language modeling helps to improve the detection accuracy and reduce the false alarm rate of security systems. Finally, this paper summarizes the current application results and points out that it still faces challenges in model transparency, interpretability, and scene adaptability, among other issues. It is necessary to explore further the optimization of the model structure and the improvement of the generalization ability to realize a more intelligent and accurate information security protection system.
Related papers
- A Survey on Data Security in Large Language Models [12.23432845300652]
Large Language Models (LLMs) are a foundation in advancing natural language processing, power applications such as text generation, machine translation, and conversational systems.<n>Despite their transformative potential, these models inherently rely on massive amounts of training data, often collected from diverse and uncurated sources, which exposes them to serious data security risks.<n>Harmful or malicious data can compromise model behavior, leading to issues such as toxic output, hallucinations, and vulnerabilities to threats such as prompt injection or data poisoning.<n>This survey offers a comprehensive overview of the main data security risks facing LLMs and reviews current defense strategies, including adversarial
arXiv Detail & Related papers (2025-08-04T11:28:34Z) - Improving LLM Reasoning for Vulnerability Detection via Group Relative Policy Optimization [45.799380822683034]
We present an extensive study aimed at advancing RL-based finetuning techniques for Large Language Models (LLMs)<n>We highlight key limitations of commonly adopted LLMs, such as their tendency to over-predict certain types of vulnerabilities while failing to detect others.<n>To address this challenge, we explore the use of Group Relative Policy Optimization (GRPO), a recent policy-gradient method, for guiding LLM behavior through structured, rule-based rewards.
arXiv Detail & Related papers (2025-07-03T11:52:45Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
Model extraction attacks pose significant security threats to deployed language models.<n>This survey provides a comprehensive taxonomy of extraction attacks and defenses, categorizing attacks into functionality extraction, training data extraction, and prompt-targeted attacks.<n>We examine defense mechanisms organized into model protection, data privacy protection, and prompt-targeted strategies, evaluating their effectiveness across different deployment scenarios.
arXiv Detail & Related papers (2025-06-26T22:02:01Z) - From Texts to Shields: Convergence of Large Language Models and Cybersecurity [15.480598518857695]
This report explores the convergence of large language models (LLMs) and cybersecurity.<n>It examines emerging applications of LLMs in software and network security, 5G vulnerability analysis, and generative security engineering.
arXiv Detail & Related papers (2025-05-01T20:01:07Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.<n>We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.<n>As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection.<n>This paper provides a detailed survey of LLMs in vulnerability detection.<n>We address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis.
arXiv Detail & Related papers (2025-02-10T21:33:38Z) - Safety at Scale: A Comprehensive Survey of Large Model and Agent Safety [296.5392512998251]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.<n>We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
We propose a methodology leveraging Natural Language Processing (NLP) to associate Common Vulnerabilities and Exposure (CAPEC) vulnerabilities with Common Attack Patternion and Classification (CAPEC) attack patterns.<n> Experimental evaluations demonstrate superior performance compared to state-of-the-art models.
arXiv Detail & Related papers (2025-01-13T08:39:52Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
Security and privacy issues have undermined users' confidence in pre-trained models.
Current literature lacks a clear taxonomy of emerging attacks and defenses for pre-trained models.
This taxonomy categorizes attacks and defenses into No-Change, Input-Change, and Model-Change approaches.
arXiv Detail & Related papers (2024-11-12T10:15:33Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
Large language models (LLMs) have made remarkable advancements in natural language processing.
These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities.
Privacy and security issues have been revealed throughout their life cycle.
arXiv Detail & Related papers (2024-06-12T07:55:32Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)<n>We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.<n>We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)<n>We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.<n>Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.