Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns
- URL: http://arxiv.org/abs/2501.07131v1
- Date: Mon, 13 Jan 2025 08:39:52 GMT
- Title: Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns
- Authors: Silvia Bonomi, Andrea Ciavotta, Simone Lenti, Alessandro Palma,
- Abstract summary: We propose a methodology leveraging Natural Language Processing (NLP) to associate Common Vulnerabilities and Exposure (CAPEC) vulnerabilities with Common Attack Patternion and Classification (CAPEC) attack patterns.
Experimental evaluations demonstrate superior performance compared to state-of-the-art models.
- Score: 42.63501759921809
- License:
- Abstract: Threat analysis is continuously growing in importance due to the always-increasing complexity and frequency of cyber attacks. Analyzing threats demands significant effort from security experts, leading to delays in the security analysis process. Different cybersecurity knowledge bases are currently available to support this task but manual efforts are often required to correlate such heterogenous sources into a unified view that would enable a more comprehensive assessment. To address this gap, we propose a methodology leveraging Natural Language Processing (NLP) to effectively and efficiently associate Common Vulnerabilities and Exposure (CVE) vulnerabilities with Common Attack Pattern Enumeration and Classification (CAPEC) attack patterns. The proposed technique combines semantic similarity with keyword analysis to improve the accuracy of association estimations. Experimental evaluations demonstrate superior performance compared to state-of-the-art models, reducing manual effort and analysis time, and enabling cybersecurity professionals to prioritize critical tasks.
Related papers
- Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete.
Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems.
This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy.
arXiv Detail & Related papers (2025-01-09T11:38:58Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
This paper introduces an innovative approach by proposing a dynamic vulnerability criticality calculator.
Our methodology encompasses the analysis of environmental topology and the effectiveness of deployed security mechanisms.
Our approach integrates these factors into a comprehensive Fuzzy Cognitive Map model, incorporating attack paths to holistically assess the overall vulnerability score.
arXiv Detail & Related papers (2024-03-20T09:48:47Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Automated CVE Analysis for Threat Prioritization and Impact Prediction [4.540236408836132]
We introduce our novel predictive model and tool (called CVEDrill) which revolutionizes CVE analysis and threat prioritization.
CVEDrill accurately estimates the Common Vulnerability Scoring System (CVSS) vector for precise threat mitigation and priority ranking.
It seamlessly automates the classification of CVEs into the appropriate Common Weaknession (CWE) hierarchy classes.
arXiv Detail & Related papers (2023-09-06T14:34:03Z) - Semantic Similarity-Based Clustering of Findings From Security Testing
Tools [1.6058099298620423]
In particular, it is common practice to use automated security testing tools that generate reports after inspecting a software artifact from multiple perspectives.
To identify these duplicate findings manually, a security expert has to invest resources like time, effort, and knowledge.
In this study, we investigated the potential of applying Natural Language Processing for clustering semantically similar security findings.
arXiv Detail & Related papers (2022-11-20T19:03:19Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.