Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective
- URL: http://arxiv.org/abs/2507.18220v1
- Date: Thu, 24 Jul 2025 09:15:26 GMT
- Title: Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective
- Authors: Ansei Yonezawa, Heisei Yonezawa, Shuichi Yahagi, Itsuro Kajiwara, Shinya Kijimoto, Hikaru Taniuchi, Kentaro Murakami,
- Abstract summary: This study proposes SINDy with library optimization mechanism (SINDy-LOM), which is a combination of the sparse regression technique and the novel learning strategy of the library.<n>The resulting SINDy-LOM model has good interpretability and usability, as the proposed approach yields the parsimonious model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sparse identification of nonlinear dynamics (SINDy) approach can discover the governing equations of dynamical systems based on measurement data, where the dynamical model is identified as the sparse linear combination of the given basis functions. A major challenge in SINDy is the design of a library, which is a set of candidate basis functions, as the appropriate library is not trivial for many dynamical systems. To overcome this difficulty, this study proposes SINDy with library optimization mechanism (SINDy-LOM), which is a combination of the sparse regression technique and the novel learning strategy of the library. In the proposed approach, the basis functions are parametrized. The SINDy-LOM approach involves a two-layer optimization architecture: the inner-layer, in which the data-driven model is extracted as the sparse linear combination of the candidate basis functions, and the outer-layer, in which the basis functions are optimized from the viewpoint of the recursive long-term (RLT) prediction accuracy; thus, the library design is reformulated as the optimization of the parametrized basis functions. The resulting SINDy-LOM model has good interpretability and usability, as the proposed approach yields the parsimonious model. The library optimization mechanism significantly reduces user burden. The RLT perspective improves the reliability of the resulting model compared with the traditional SINDy approach that can only ensure the one-step-ahead prediction accuracy. The validity of the proposed approach is demonstrated by applying it to a diesel engine airpath system, which is a well-known complex industrial system.
Related papers
- Optimization-Free Diffusion Model -- A Perturbation Theory Approach [12.756355928431455]
Diffusion models have emerged as a powerful framework in generative modeling.<n>We propose an alternative method that is both optimization-free and forward SDE-free.<n>We demonstrate the effectiveness of our method on high-dimensional Boltzmann distributions and real-world datasets.
arXiv Detail & Related papers (2025-05-29T17:02:26Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Recursive Gaussian Process State Space Model [6.43820634528778]
We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.<n>Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.<n> Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
arXiv Detail & Related papers (2024-11-22T02:22:59Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization [3.7565501074323224]
We propose an exact formulation of the SINDyDy problem using mixed-integer optimization (MIO) to solve the sparsity constrained regression problem to provable optimality in seconds.
We illustrate the dramatic improvement of our approach in accurate model discovery while being more sample efficient, robust to noise, and flexible in accommodating physical constraints.
arXiv Detail & Related papers (2022-06-01T01:43:45Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.