Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
- URL: http://arxiv.org/abs/2507.18242v1
- Date: Thu, 24 Jul 2025 09:30:37 GMT
- Title: Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
- Authors: Fabian Akkerman, Julien Ferry, Christian Artigues, Emmanuel Hebrard, Thibaut Vidal,
- Abstract summary: We conduct the first large-scale experimental study of six LP-based boosting formulations, including two novel methods, NM-Boost and QRLP-Boost.<n>We evaluate the use of both ensemble and optimal base learners within these formulations.<n>We show that totally corrective methods can outperform or match state-of-the-arts like XGBoost and LightGBM when using shallow trees.
- Score: 7.384207689387448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their theoretical appeal, totally corrective boosting methods based on linear programming have received limited empirical attention. In this paper, we conduct the first large-scale experimental study of six LP-based boosting formulations, including two novel methods, NM-Boost and QRLP-Boost, across 20 diverse datasets. We evaluate the use of both heuristic and optimal base learners within these formulations, and analyze not only accuracy, but also ensemble sparsity, margin distribution, anytime performance, and hyperparameter sensitivity. We show that totally corrective methods can outperform or match state-of-the-art heuristics like XGBoost and LightGBM when using shallow trees, while producing significantly sparser ensembles. We further show that these methods can thin pre-trained ensembles without sacrificing performance, and we highlight both the strengths and limitations of using optimal decision trees in this context.
Related papers
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
Current deep learning algorithms usually solve for the optimal classifier by emphimplicitly estimating the posterior probabilities.<n>This simple methodology has been proven effective for meticulously balanced academic benchmark datasets.<n>However, it is not applicable to the long-tailed data distributions in the real world.<n>This paper presents a novel approach (BAPE) that provides a more precise theoretical estimation of the data distributions.
arXiv Detail & Related papers (2025-06-29T15:12:50Z) - TreeRPO: Tree Relative Policy Optimization [55.97385410074841]
name is a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling.<n>Building on the group-relative reward training mechanism of GRPO, name innovatively computes rewards based on step-level groups generated during tree sampling.
arXiv Detail & Related papers (2025-06-05T15:56:38Z) - Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization [56.805574957824135]
Two-way partial AUCAUC is a critical performance metric for binary classification with imbalanced data.<n>Existing algorithms for TPAUC optimization remain under-explored.<n>We introduce two innovative double-coordinate block-coordinate algorithms for TPAUC optimization.
arXiv Detail & Related papers (2025-05-28T03:55:05Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
This paper proposes an innovative method specifically designed for kernel support vector machines (SVMs)
It not only achieves faster iteration per iteration but also exhibits enhanced convergence when compared to conventional SFO techniques.
Our experimental results demonstrate that the proposed algorithm not only maintains but potentially exceeds the scalability of SFO methods.
arXiv Detail & Related papers (2024-07-30T17:03:19Z) - Benchmarking state-of-the-art gradient boosting algorithms for
classification [0.0]
This work explores the use of gradient boosting in the context of classification.
Four popular implementations, including original GBM algorithm and selected state-of-the-art gradient boosting frameworks, have been compared.
An attempt was made to indicate a gradient boosting variant showing the right balance between effectiveness, reliability and ease of use.
arXiv Detail & Related papers (2023-05-26T17:06:15Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoost is a new boosting algorithm for probabilistic classifiers.
It uses the uncertainty of each training sample to determine the most challenging/uncertain ones.
It produces a sequence that progressively focuses on the samples found to have the highest uncertainty.
arXiv Detail & Related papers (2022-09-04T12:49:20Z) - Strong Optimal Classification Trees [8.10995244893652]
We propose an intuitive flow-based MIO formulation for learning optimal binary classification trees.
Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees.
We show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques.
arXiv Detail & Related papers (2021-03-29T21:40:58Z) - Lower Bounds and Optimal Algorithms for Personalized Federated Learning [7.742297876120562]
We consider the optimization formulation of personalized federated learning recently introduced by Hanzely and Richt'arik ( 2020)
Our first contribution is establishing the first lower bounds for this formulation, for both the communication complexity and the local oracle complexity.
Our second contribution is the design of several optimal methods matching these lower bounds in almost all regimes.
arXiv Detail & Related papers (2020-10-05T22:29:51Z) - Learning Optimal Classification Trees: Strong Max-Flow Formulations [8.10995244893652]
We propose a flow-based MIP formulation for optimal binary classification trees with a stronger linear programming relaxation.
Our formulation presents an attractive decomposable structure. We exploit this structure and max-flow/min-cut duality to derive a Benders' decomposition method.
arXiv Detail & Related papers (2020-02-21T05:58:17Z) - On the Dual Formulation of Boosting Algorithms [92.74617630106559]
We show that the Lagrange problems of AdaBoost, LogitBoost and soft-marginBoost are all dual problems with generalized hinge loss entropy.
By looking at the dual problems of these boosting algorithms, we show that the success of boosting can be understood in terms of maintaining a better margin distribution.
arXiv Detail & Related papers (2009-01-23T02:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.