Data Transmission over a Bosonic Arbitrarily Varying Quantum Channel
- URL: http://arxiv.org/abs/2507.18259v1
- Date: Thu, 24 Jul 2025 10:01:16 GMT
- Title: Data Transmission over a Bosonic Arbitrarily Varying Quantum Channel
- Authors: Janis Nötzel, Florian Seitz,
- Abstract summary: We give an explicit capacity formula for the lossy bosonic channel subject to semi-classical attacks.<n>We show how a recently conjectured new quantum entropy power relates to our capacity formula.
- Score: 1.534667887016089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arbitrarily varying channels offer a powerful framework for analyzing the robustness of quantum communication systems, especially for classical-quantum models, where the analysis displays strengths or weaknesses of specific signal constellations under generic attacks. In this work, we provide a coding theorem for a large class of practically relevant arbitrarily varying channel models. Namely, we give an explicit capacity formula for the lossy bosonic channel subject to semi-classical attacks, where an adversary injects semi-classical states into the transmission line. Mathematically, this is modeled via a beam-splitter setup, with transmitter and jammer controlling different input ports and the receiver observing one output port. We show how a recently conjectured new quantum entropy power inequality relates to our capacity formula.
Related papers
- Error Exponents for Quantum Packing Problems via An Operator Layer Cake Theorem [6.675805308519987]
We prove a one-shot random coding bound for classical-quantum channel coding.<n>Our result extends to various quantum packing-type problems.<n>This shows that a kind of pretty-good measurement is equivalent to a randomized Holevo-Helstrom measurement.
arXiv Detail & Related papers (2025-07-08T17:59:58Z) - Crosstalk-Resilient Quantum MIMO for Scalable Quantum Communications [40.44880302154388]
Crosstalk arises when physically coupled quantum modes interfere, degrading signal fidelity.<n>We propose a mitigation strategy based on encoding discrete-variable quantum information into continuous-variable modes.<n>We prove the existence of a gauge-fixing decoder enabling recovery of the logical information.
arXiv Detail & Related papers (2025-06-26T18:40:26Z) - Fully quantum arbitrarily varying channel coding for entanglement-assisted communication [0.0]
We study the problem of entanglement-assisted capacity in the presence of system uncertainty.
We find that, under the assumption of a finite environment dimension, it is equal to a corresponding compound capacity.
Our results imply that in certain fully quantum arbitrarily varying channel models, the entanglement-assisted capacity can be positive while the classical capacity is equal to zero.
arXiv Detail & Related papers (2024-04-12T02:10:04Z) - On Simultaneous Information and Energy Transmission through Quantum Channels [15.387256204743407]
We introduce the quantum-classical analogue of the capacity-power function.<n>We generalize results in classical information theory for transmitting classical information through noisy channels.
arXiv Detail & Related papers (2023-09-24T16:46:47Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Coherent control and distinguishability of quantum channels via
PBS-diagrams [59.94347858883343]
We introduce a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS)
We characterise the observational equivalence of purified channels in various coherent-control contexts, paving the way towards a faithful representation of quantum channels under coherent control.
arXiv Detail & Related papers (2021-03-02T22:56:25Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Explicit construction of optimal witnesses for input-output correlations
attainable by quantum channels [3.441021278275805]
We consider the problem of characterizing the set of classical noisy channels that can be obtained from a quantum channel.
We consider various classes of linear witnesses and compute their optimum values in closed form for several classes of quantum channels.
The witnesses that we consider here are formulated as communication games, in which Alice's aim is to exploit a single use of a given quantum channel to help Bob guess some information she has received from an external referee.
arXiv Detail & Related papers (2020-09-02T07:34:23Z) - Quantum Channel State Masking [78.7611537027573]
Communication over a quantum channel that depends on a quantum state is considered when the encoder has channel side information (CSI) and is required to mask information on the quantum channel state from the decoder.
A full characterization is established for the entanglement-assisted masking equivocation region, and a regularized formula is given for the quantum capacity-leakage function without assistance.
arXiv Detail & Related papers (2020-06-10T16:18:03Z) - Permutation Enhances Classical Communication Assisted by Entangled
States [67.12391801199688]
We show that the capacity satisfies the strong converse property and thus the formula serves as a sharp dividing line between achievable and unachievable rates of communication.
As examples, we derive analytically the classical capacity of various quantum channels of interests.
arXiv Detail & Related papers (2020-01-07T01:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.