Error Exponents for Quantum Packing Problems via An Operator Layer Cake Theorem
- URL: http://arxiv.org/abs/2507.06232v2
- Date: Mon, 28 Jul 2025 12:57:57 GMT
- Title: Error Exponents for Quantum Packing Problems via An Operator Layer Cake Theorem
- Authors: Hao-Chung Cheng, Po-Chieh Liu,
- Abstract summary: We prove a one-shot random coding bound for classical-quantum channel coding.<n>Our result extends to various quantum packing-type problems.<n>This shows that a kind of pretty-good measurement is equivalent to a randomized Holevo-Helstrom measurement.
- Score: 6.675805308519987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we prove a one-shot random coding bound for classical-quantum channel coding, a problem conjectured by Burnashev and Holevo in 1998. By choosing the optimal input distribution, we recover the optimal error exponent (i.e., the reliability function) of classical-quantum channels for rates above the critical rate. Our result extends to various quantum packing-type problems, including classical communication over any fully quantum channel with or without entanglement-assistance, constant composition codes, and classical data compression with quantum side information via fixed-length or variable-length coding. Our technical ingredient is to establish an operator layer cake theorem - the directional derivative of an operator logarithm admits an integral representation of certain projections. This shows that a kind of pretty-good measurement is equivalent to a randomized Holevo-Helstrom measurement, which provides an operational explanation of why the pretty-good measurement is pretty good.
Related papers
- Data Transmission over a Bosonic Arbitrarily Varying Quantum Channel [1.534667887016089]
We give an explicit capacity formula for the lossy bosonic channel subject to semi-classical attacks.<n>We show how a recently conjectured new quantum entropy power relates to our capacity formula.
arXiv Detail & Related papers (2025-07-24T10:01:16Z) - Fault-tolerant quantum input/output [6.787248655856051]
We show that any quantum circuit with quantum input and output can be transformed into a fault-tolerant circuit.
The framework allows the direct composition of the statements, enabling versatile future applications.
arXiv Detail & Related papers (2024-08-09T12:26:38Z) - Efficient information recovery from Pauli noise via classical shadow [6.689075863602204]
We introduce an efficient algorithm that can recover information from quantum states under Pauli noise.
For a local and bounded-degree observable, only partial knowledge of the channel is required to recover the ideal information.
As a notable application, our method can be severed as a sample-efficient error mitigation scheme for Clifford circuits.
arXiv Detail & Related papers (2023-05-06T23:34:13Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Simple and Tighter Derivation of Achievability for Classical
Communication over Quantum Channels [7.88657961743755]
In this work, we show that the pretty-good measurement naturally plays a role as the union bound as well.
A judicious application of it considerably simplifies the derivation of one-shot achievability for classical-quantum (c-q) channel coding via an elegant three-line proof.
The proposed method applies to deriving one-shot achievability for classical data compression with quantum side information, entanglement-assisted classical communication over quantum channels, and various quantum network information-processing protocols.
arXiv Detail & Related papers (2022-08-03T15:12:01Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - On the classical capacity of quantum Gaussian measurement [0.0]
We prove Gaussianity of the average state of the optimal ensemble in general.
We discuss the Hypothesis of Gaussian Maximizers concerning the structure of the ensemble.
arXiv Detail & Related papers (2021-01-02T11:11:22Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Explicit construction of optimal witnesses for input-output correlations
attainable by quantum channels [3.441021278275805]
We consider the problem of characterizing the set of classical noisy channels that can be obtained from a quantum channel.
We consider various classes of linear witnesses and compute their optimum values in closed form for several classes of quantum channels.
The witnesses that we consider here are formulated as communication games, in which Alice's aim is to exploit a single use of a given quantum channel to help Bob guess some information she has received from an external referee.
arXiv Detail & Related papers (2020-09-02T07:34:23Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.