Unconventional Thermalization of a Localized Chain Interacting with an Ergodic Bath
- URL: http://arxiv.org/abs/2507.18286v1
- Date: Thu, 24 Jul 2025 10:46:06 GMT
- Title: Unconventional Thermalization of a Localized Chain Interacting with an Ergodic Bath
- Authors: Konrad Pawlik, Nicolas Laflorencie, Jakub Zakrzewski,
- Abstract summary: We introduce the interacting Anderson Quantum Sun model, which significantly deviates from conventional expectations.<n>In addition to standard localized and ergodic phases, we identify a regime that exhibits volume-law entanglement coexisting with intermediate spectral statistics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of many-body localized (MBL) phases intrinsically links spectral properties with eigenstate characteristics: localized systems exhibit Poisson level statistics and area-law entanglement entropy, while ergodic systems display volume-law entanglement and follow random matrix theory predictions, including level repulsion. Here, we introduce the interacting Anderson Quantum Sun model, which significantly deviates from these conventional expectations. In addition to standard localized and ergodic phases, we identify a regime that exhibits volume-law entanglement coexisting with intermediate spectral statistics. We also identify another nonstandard regime marked by Poisson level statistics, sub-volume entanglement growth, and rare-event-dominated correlations, indicative of emerging ergodic instabilities. These results highlight unconventional routes of ergodicity breaking and offer fresh perspectives on how Anderson localization may be destabilized.
Related papers
- Quantum and Semi-Classical Signatures of Dissipative Chaos in the Steady State [0.40498500266986387]
We investigate the quantum-classical correspondence in open quantum many-body systems using the SU(3) Bose-Hubbard trimer as a minimal model.<n>We show that classical dynamical behavior, as quantified by the sign of the Lyapunov exponent, governs the level statistics of the steady-state density matrix.
arXiv Detail & Related papers (2025-06-17T20:21:06Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Exact Spectral Statistics in Strongly Localised Circuits [0.0]
Localisation has been recognised as a standard mechanism allowing quantum many-body systems to escape ergodicity.
Here we provide the example of a simple class of quantum many-body systems that are interacting, localised, and where the spectral statistics can be characterised exactly.
We argue that these features appear in generic MBL systems, with the difference that only at the smallest scale they do become Poissonian.
arXiv Detail & Related papers (2021-10-29T17:38:04Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Model of level statistics for disordered interacting quantum many-body
systems [0.0]
We numerically study level statistics of disordered interacting quantum many-body systems.
We show that the range of effective interactions between eigenvalues $h$ is related to the Thouless time.
arXiv Detail & Related papers (2019-07-24T10:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.