Beyond Low-rankness: Guaranteed Matrix Recovery via Modified Nuclear Norm
- URL: http://arxiv.org/abs/2507.18327v1
- Date: Thu, 24 Jul 2025 11:53:55 GMT
- Title: Beyond Low-rankness: Guaranteed Matrix Recovery via Modified Nuclear Norm
- Authors: Jiangjun Peng, Yisi Luo, Xiangyong Cao, Shuang Xu, Deyu Meng,
- Abstract summary: The nuclear norm (NN) has been widely explored in matrix recovery problems, such as Robust PCA and matrix completion.<n>We introduce a new modified nuclear norm (MNN) framework, where the MNN family norms are defined by adopting suitable transformations and performing the NN on the transformed matrix.
- Score: 52.00038315973684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nuclear norm (NN) has been widely explored in matrix recovery problems, such as Robust PCA and matrix completion, leveraging the inherent global low-rank structure of the data. In this study, we introduce a new modified nuclear norm (MNN) framework, where the MNN family norms are defined by adopting suitable transformations and performing the NN on the transformed matrix. The MNN framework offers two main advantages: (1) it jointly captures both local information and global low-rankness without requiring trade-off parameter tuning; (2) Under mild assumptions on the transformation, we provided exact theoretical recovery guarantees for both Robust PCA and MC tasks-an achievement not shared by existing methods that combine local and global information. Thanks to its general and flexible design, MNN can accommodate various proven transformations, enabling a unified and effective approach to structured low-rank recovery. Extensive experiments demonstrate the effectiveness of our method. Code and supplementary material are available at https://github.com/andrew-pengjj/modified_nuclear_norm.
Related papers
- MNT-TNN: Spatiotemporal Traffic Data Imputation via Compact Multimode Nonlinear Transform-based Tensor Nuclear Norm [49.15782245370261]
imputation of random or non-random missing data is a crucial application for Intelligent Transportation Systems (ITS)<n>We propose a novel imputation method, Multimode Transformed Nuclear Norm Families (ATTNNs)<n>Our proposed MNT-TNN and ATTNNs can outperform the benchmark compared state-of-the-art imputation methods.
arXiv Detail & Related papers (2025-03-29T02:58:31Z) - Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
We propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in in-memory computing architectures.
Empirical results show a graceful degradation in inference accuracy, with an improvement of up to $58.11%$.
arXiv Detail & Related papers (2024-01-23T00:27:31Z) - Supervised Class-pairwise NMF for Data Representation and Classification [2.7320863258816512]
Non-negative Matrix factorization (NMF) based methods add new terms to the cost function to adapt the model to specific tasks.
NMF method adopts unsupervised approaches to estimate the factorizing matrices.
arXiv Detail & Related papers (2022-09-28T04:33:03Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
We propose a neural network called SymNMF-Net for the Symmetric NMF problem.
We show that the inference of each block corresponds to a single iteration of the optimization.
Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net.
arXiv Detail & Related papers (2022-05-26T08:17:39Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - MMCGAN: Generative Adversarial Network with Explicit Manifold Prior [78.58159882218378]
We propose to employ explicit manifold learning as prior to alleviate mode collapse and stabilize training of GAN.
Our experiments on both the toy data and real datasets show the effectiveness of MMCGAN in alleviating mode collapse, stabilizing training, and improving the quality of generated samples.
arXiv Detail & Related papers (2020-06-18T07:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.